setups
openml.setups
#
OpenMLParameter
#
OpenMLParameter(input_id: int, flow_id: int, flow_name: str, full_name: str, parameter_name: str, data_type: str, default_value: str, value: str)
Parameter object (used in setup).
| PARAMETER | DESCRIPTION |
|---|---|
input_id
|
The input id from the openml database
TYPE:
|
flow
|
The flow to which this parameter is associated
|
flow
|
The name of the flow (no version number) to which this parameter is associated
|
full_name
|
The name of the flow and parameter combined
TYPE:
|
parameter_name
|
The name of the parameter
TYPE:
|
data_type
|
The datatype of the parameter. generally unused for sklearn flows
TYPE:
|
default_value
|
The default value. For sklearn parameters, this is unknown and a default value is selected arbitrarily
TYPE:
|
value
|
If the parameter was set, the value that it was set to.
TYPE:
|
Source code in openml/setups/setup.py
OpenMLSetup
#
Setup object (a.k.a. Configuration).
| PARAMETER | DESCRIPTION |
|---|---|
setup_id
|
The OpenML setup id
TYPE:
|
flow_id
|
The flow that it is build upon
TYPE:
|
parameters
|
The setting of the parameters
TYPE:
|
Source code in openml/setups/setup.py
get_setup
#
get_setup(setup_id: int) -> OpenMLSetup
Downloads the setup (configuration) description from OpenML and returns a structured object
| PARAMETER | DESCRIPTION |
|---|---|
setup_id
|
The Openml setup_id
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
OpenMLSetup (an initialized openml setup object)
|
|
Source code in openml/setups/functions.py
initialize_model
#
Initialized a model based on a setup_id (i.e., using the exact same parameter settings)
| PARAMETER | DESCRIPTION |
|---|---|
setup_id
|
The Openml setup_id
TYPE:
|
strict_version
|
See
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
model
|
|
Source code in openml/setups/functions.py
list_setups
#
list_setups(offset: int | None = None, size: int | None = None, flow: int | None = None, tag: str | None = None, setup: Iterable[int] | None = None, output_format: Literal['object', 'dataframe'] = 'object') -> dict[int, OpenMLSetup] | DataFrame
List all setups matching all of the given filters.
| PARAMETER | DESCRIPTION |
|---|---|
offset
|
TYPE:
|
size
|
TYPE:
|
flow
|
TYPE:
|
tag
|
TYPE:
|
setup
|
TYPE:
|
output_format
|
The parameter decides the format of the output. - If 'dataframe' the output is a pandas DataFrame - If 'object' the output is a dictionary of OpenMLSetup objects
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
dict or dataframe
|
|
Source code in openml/setups/functions.py
setup_exists
#
setup_exists(flow: OpenMLFlow) -> int
Checks whether a hyperparameter configuration already exists on the server.
| PARAMETER | DESCRIPTION |
|---|---|
flow
|
The openml flow object. Should have flow id present for the main flow and all subflows (i.e., it should be downloaded from the server by means of flow.get, and not instantiated locally)
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
setup_id
|
setup id iff exists, False otherwise
TYPE:
|