functions
openml.setups.functions
#
__list_setups
#
__list_setups(api_call: str) -> list[OpenMLSetup]
Helper function to parse API calls which are lists of setups
Source code in openml/setups/functions.py
get_setup
#
get_setup(setup_id: int) -> OpenMLSetup
Downloads the setup (configuration) description from OpenML and returns a structured object
| PARAMETER | DESCRIPTION |
|---|---|
setup_id
|
The Openml setup_id
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
OpenMLSetup (an initialized openml setup object)
|
|
Source code in openml/setups/functions.py
initialize_model
#
Initialized a model based on a setup_id (i.e., using the exact same parameter settings)
| PARAMETER | DESCRIPTION |
|---|---|
setup_id
|
The Openml setup_id
TYPE:
|
strict_version
|
See
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
model
|
|
Source code in openml/setups/functions.py
list_setups
#
list_setups(offset: int | None = None, size: int | None = None, flow: int | None = None, tag: str | None = None, setup: Iterable[int] | None = None, output_format: Literal['object', 'dataframe'] = 'object') -> dict[int, OpenMLSetup] | DataFrame
List all setups matching all of the given filters.
| PARAMETER | DESCRIPTION |
|---|---|
offset
|
TYPE:
|
size
|
TYPE:
|
flow
|
TYPE:
|
tag
|
TYPE:
|
setup
|
TYPE:
|
output_format
|
The parameter decides the format of the output. - If 'dataframe' the output is a pandas DataFrame - If 'object' the output is a dictionary of OpenMLSetup objects
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
dict or dataframe
|
|
Source code in openml/setups/functions.py
setup_exists
#
setup_exists(flow: OpenMLFlow) -> int
Checks whether a hyperparameter configuration already exists on the server.
| PARAMETER | DESCRIPTION |
|---|---|
flow
|
The openml flow object. Should have flow id present for the main flow and all subflows (i.e., it should be downloaded from the server by means of flow.get, and not instantiated locally)
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
setup_id
|
setup id iff exists, False otherwise
TYPE:
|