task
openml.tasks.task
#
OpenMLClassificationTask
#
OpenMLClassificationTask(task_type_id: TaskType, task_type: str, data_set_id: int, target_name: str, estimation_procedure_id: int = 1, estimation_procedure_type: str | None = None, estimation_parameters: dict[str, str] | None = None, evaluation_measure: str | None = None, data_splits_url: str | None = None, task_id: int | None = None, class_labels: list[str] | None = None, cost_matrix: ndarray | None = None)
Bases: OpenMLSupervisedTask
OpenML Classification object.
| PARAMETER | DESCRIPTION |
|---|---|
task_type_id
|
ID of the Classification task type.
TYPE:
|
task_type
|
Name of the Classification task type.
TYPE:
|
data_set_id
|
ID of the OpenML dataset associated with the Classification task.
TYPE:
|
target_name
|
Name of the target variable.
TYPE:
|
estimation_procedure_id
|
ID of the estimation procedure for the Classification task.
TYPE:
|
estimation_procedure_type
|
Type of the estimation procedure.
TYPE:
|
estimation_parameters
|
Estimation parameters for the Classification task.
TYPE:
|
evaluation_measure
|
Name of the evaluation measure.
TYPE:
|
data_splits_url
|
URL of the data splits for the Classification task.
TYPE:
|
task_id
|
ID of the Classification task (if it already exists on OpenML).
TYPE:
|
class_labels
|
A list of class labels (for classification tasks).
TYPE:
|
cost_matrix
|
A cost matrix (for classification tasks).
TYPE:
|
Source code in openml/tasks/task.py
estimation_parameters
property
writable
#
Return the estimation parameters for the task.
openml_url
property
#
The URL of the object on the server, if it was uploaded, else None.
download_split
#
download_split() -> OpenMLSplit
Download the OpenML split for a given task.
Source code in openml/tasks/task.py
get_X_and_y
#
Get data associated with the current task.
| RETURNS | DESCRIPTION |
|---|---|
tuple - X and y
|
|
Source code in openml/tasks/task.py
get_dataset
#
get_dataset(**kwargs: Any) -> OpenMLDataset
Download dataset associated with task.
Accepts the same keyword arguments as the openml.datasets.get_dataset.
get_split_dimensions
#
Get the (repeats, folds, samples) of the split for a given task.
Source code in openml/tasks/task.py
get_train_test_split_indices
#
get_train_test_split_indices(fold: int = 0, repeat: int = 0, sample: int = 0) -> tuple[ndarray, ndarray]
Get the indices of the train and test splits for a given task.
Source code in openml/tasks/task.py
open_in_browser
#
Opens the OpenML web page corresponding to this object in your default browser.
Source code in openml/base.py
publish
#
publish() -> OpenMLBase
Publish the object on the OpenML server.
Source code in openml/base.py
push_tag
#
Annotates this entity with a tag on the server.
| PARAMETER | DESCRIPTION |
|---|---|
tag
|
Tag to attach to the flow.
TYPE:
|
remove_tag
#
Removes a tag from this entity on the server.
| PARAMETER | DESCRIPTION |
|---|---|
tag
|
Tag to attach to the flow.
TYPE:
|
url_for_id
classmethod
#
Return the OpenML URL for the object of the class entity with the given id.
OpenMLClusteringTask
#
OpenMLClusteringTask(task_type_id: TaskType, task_type: str, data_set_id: int, estimation_procedure_id: int = 17, task_id: int | None = None, estimation_procedure_type: str | None = None, estimation_parameters: dict[str, str] | None = None, data_splits_url: str | None = None, evaluation_measure: str | None = None, target_name: str | None = None)
Bases: OpenMLTask
OpenML Clustering object.
| PARAMETER | DESCRIPTION |
|---|---|
task_type_id
|
Task type ID of the OpenML clustering task.
TYPE:
|
task_type
|
Task type of the OpenML clustering task.
TYPE:
|
data_set_id
|
ID of the OpenML dataset used in clustering the task.
TYPE:
|
estimation_procedure_id
|
ID of the OpenML estimation procedure.
TYPE:
|
task_id
|
ID of the OpenML clustering task.
TYPE:
|
estimation_procedure_type
|
Type of the OpenML estimation procedure used in the clustering task.
TYPE:
|
estimation_parameters
|
Parameters used by the OpenML estimation procedure.
TYPE:
|
data_splits_url
|
URL of the OpenML data splits for the clustering task.
TYPE:
|
evaluation_measure
|
Evaluation measure used in the clustering task.
TYPE:
|
target_name
|
Name of the target feature (class) that is not part of the feature set for the clustering task.
TYPE:
|
Source code in openml/tasks/task.py
openml_url
property
#
The URL of the object on the server, if it was uploaded, else None.
download_split
#
download_split() -> OpenMLSplit
Download the OpenML split for a given task.
Source code in openml/tasks/task.py
get_X
#
Get data associated with the current task.
| RETURNS | DESCRIPTION |
|---|---|
The X data as a dataframe
|
|
get_dataset
#
get_dataset(**kwargs: Any) -> OpenMLDataset
Download dataset associated with task.
Accepts the same keyword arguments as the openml.datasets.get_dataset.
get_split_dimensions
#
Get the (repeats, folds, samples) of the split for a given task.
Source code in openml/tasks/task.py
get_train_test_split_indices
#
get_train_test_split_indices(fold: int = 0, repeat: int = 0, sample: int = 0) -> tuple[ndarray, ndarray]
Get the indices of the train and test splits for a given task.
Source code in openml/tasks/task.py
open_in_browser
#
Opens the OpenML web page corresponding to this object in your default browser.
Source code in openml/base.py
publish
#
publish() -> OpenMLBase
Publish the object on the OpenML server.
Source code in openml/base.py
push_tag
#
Annotates this entity with a tag on the server.
| PARAMETER | DESCRIPTION |
|---|---|
tag
|
Tag to attach to the flow.
TYPE:
|
remove_tag
#
Removes a tag from this entity on the server.
| PARAMETER | DESCRIPTION |
|---|---|
tag
|
Tag to attach to the flow.
TYPE:
|
url_for_id
classmethod
#
Return the OpenML URL for the object of the class entity with the given id.
OpenMLLearningCurveTask
#
OpenMLLearningCurveTask(task_type_id: TaskType, task_type: str, data_set_id: int, target_name: str, estimation_procedure_id: int = 13, estimation_procedure_type: str | None = None, estimation_parameters: dict[str, str] | None = None, data_splits_url: str | None = None, task_id: int | None = None, evaluation_measure: str | None = None, class_labels: list[str] | None = None, cost_matrix: ndarray | None = None)
Bases: OpenMLClassificationTask
OpenML Learning Curve object.
| PARAMETER | DESCRIPTION |
|---|---|
task_type_id
|
ID of the Learning Curve task.
TYPE:
|
task_type
|
Name of the Learning Curve task.
TYPE:
|
data_set_id
|
ID of the dataset that this task is associated with.
TYPE:
|
target_name
|
Name of the target feature in the dataset.
TYPE:
|
estimation_procedure_id
|
ID of the estimation procedure to use for evaluating models.
TYPE:
|
estimation_procedure_type
|
Type of the estimation procedure.
TYPE:
|
estimation_parameters
|
Additional parameters for the estimation procedure.
TYPE:
|
data_splits_url
|
URL of the file containing the data splits for Learning Curve task.
TYPE:
|
task_id
|
ID of the Learning Curve task.
TYPE:
|
evaluation_measure
|
Name of the evaluation measure to use for evaluating models.
TYPE:
|
class_labels
|
Class labels for Learning Curve tasks.
TYPE:
|
cost_matrix
|
Cost matrix for Learning Curve tasks.
TYPE:
|
Source code in openml/tasks/task.py
estimation_parameters
property
writable
#
Return the estimation parameters for the task.
openml_url
property
#
The URL of the object on the server, if it was uploaded, else None.
download_split
#
download_split() -> OpenMLSplit
Download the OpenML split for a given task.
Source code in openml/tasks/task.py
get_X_and_y
#
Get data associated with the current task.
| RETURNS | DESCRIPTION |
|---|---|
tuple - X and y
|
|
Source code in openml/tasks/task.py
get_dataset
#
get_dataset(**kwargs: Any) -> OpenMLDataset
Download dataset associated with task.
Accepts the same keyword arguments as the openml.datasets.get_dataset.
get_split_dimensions
#
Get the (repeats, folds, samples) of the split for a given task.
Source code in openml/tasks/task.py
get_train_test_split_indices
#
get_train_test_split_indices(fold: int = 0, repeat: int = 0, sample: int = 0) -> tuple[ndarray, ndarray]
Get the indices of the train and test splits for a given task.
Source code in openml/tasks/task.py
open_in_browser
#
Opens the OpenML web page corresponding to this object in your default browser.
Source code in openml/base.py
publish
#
publish() -> OpenMLBase
Publish the object on the OpenML server.
Source code in openml/base.py
push_tag
#
Annotates this entity with a tag on the server.
| PARAMETER | DESCRIPTION |
|---|---|
tag
|
Tag to attach to the flow.
TYPE:
|
remove_tag
#
Removes a tag from this entity on the server.
| PARAMETER | DESCRIPTION |
|---|---|
tag
|
Tag to attach to the flow.
TYPE:
|
url_for_id
classmethod
#
Return the OpenML URL for the object of the class entity with the given id.
OpenMLRegressionTask
#
OpenMLRegressionTask(task_type_id: TaskType, task_type: str, data_set_id: int, target_name: str, estimation_procedure_id: int = 7, estimation_procedure_type: str | None = None, estimation_parameters: dict[str, str] | None = None, data_splits_url: str | None = None, task_id: int | None = None, evaluation_measure: str | None = None)
Bases: OpenMLSupervisedTask
OpenML Regression object.
| PARAMETER | DESCRIPTION |
|---|---|
task_type_id
|
Task type ID of the OpenML Regression task.
TYPE:
|
task_type
|
Task type of the OpenML Regression task.
TYPE:
|
data_set_id
|
ID of the OpenML dataset.
TYPE:
|
target_name
|
Name of the target feature used in the Regression task.
TYPE:
|
estimation_procedure_id
|
ID of the OpenML estimation procedure.
TYPE:
|
estimation_procedure_type
|
Type of the OpenML estimation procedure.
TYPE:
|
estimation_parameters
|
Parameters used by the OpenML estimation procedure.
TYPE:
|
data_splits_url
|
URL of the OpenML data splits for the Regression task.
TYPE:
|
task_id
|
ID of the OpenML Regression task.
TYPE:
|
evaluation_measure
|
Evaluation measure used in the Regression task.
TYPE:
|
Source code in openml/tasks/task.py
estimation_parameters
property
writable
#
Return the estimation parameters for the task.
openml_url
property
#
The URL of the object on the server, if it was uploaded, else None.
download_split
#
download_split() -> OpenMLSplit
Download the OpenML split for a given task.
Source code in openml/tasks/task.py
get_X_and_y
#
Get data associated with the current task.
| RETURNS | DESCRIPTION |
|---|---|
tuple - X and y
|
|
Source code in openml/tasks/task.py
get_dataset
#
get_dataset(**kwargs: Any) -> OpenMLDataset
Download dataset associated with task.
Accepts the same keyword arguments as the openml.datasets.get_dataset.
get_split_dimensions
#
Get the (repeats, folds, samples) of the split for a given task.
Source code in openml/tasks/task.py
get_train_test_split_indices
#
get_train_test_split_indices(fold: int = 0, repeat: int = 0, sample: int = 0) -> tuple[ndarray, ndarray]
Get the indices of the train and test splits for a given task.
Source code in openml/tasks/task.py
open_in_browser
#
Opens the OpenML web page corresponding to this object in your default browser.
Source code in openml/base.py
publish
#
publish() -> OpenMLBase
Publish the object on the OpenML server.
Source code in openml/base.py
push_tag
#
Annotates this entity with a tag on the server.
| PARAMETER | DESCRIPTION |
|---|---|
tag
|
Tag to attach to the flow.
TYPE:
|
remove_tag
#
Removes a tag from this entity on the server.
| PARAMETER | DESCRIPTION |
|---|---|
tag
|
Tag to attach to the flow.
TYPE:
|
url_for_id
classmethod
#
Return the OpenML URL for the object of the class entity with the given id.
OpenMLSupervisedTask
#
OpenMLSupervisedTask(task_type_id: TaskType, task_type: str, data_set_id: int, target_name: str, estimation_procedure_id: int = 1, estimation_procedure_type: str | None = None, estimation_parameters: dict[str, str] | None = None, evaluation_measure: str | None = None, data_splits_url: str | None = None, task_id: int | None = None)
Bases: OpenMLTask, ABC
OpenML Supervised Classification object.
| PARAMETER | DESCRIPTION |
|---|---|
task_type_id
|
ID of the task type.
TYPE:
|
task_type
|
Name of the task type.
TYPE:
|
data_set_id
|
ID of the OpenML dataset associated with the task.
TYPE:
|
target_name
|
Name of the target feature (the class variable).
TYPE:
|
estimation_procedure_id
|
ID of the estimation procedure for the task.
TYPE:
|
estimation_procedure_type
|
Type of the estimation procedure for the task.
TYPE:
|
estimation_parameters
|
Estimation parameters for the task.
TYPE:
|
evaluation_measure
|
Name of the evaluation measure for the task.
TYPE:
|
data_splits_url
|
URL of the data splits for the task.
TYPE:
|
task_id
|
Refers to the unique identifier of task.
TYPE:
|
Source code in openml/tasks/task.py
estimation_parameters
property
writable
#
Return the estimation parameters for the task.
openml_url
property
#
The URL of the object on the server, if it was uploaded, else None.
download_split
#
download_split() -> OpenMLSplit
Download the OpenML split for a given task.
Source code in openml/tasks/task.py
get_X_and_y
#
Get data associated with the current task.
| RETURNS | DESCRIPTION |
|---|---|
tuple - X and y
|
|
Source code in openml/tasks/task.py
get_dataset
#
get_dataset(**kwargs: Any) -> OpenMLDataset
Download dataset associated with task.
Accepts the same keyword arguments as the openml.datasets.get_dataset.
get_split_dimensions
#
Get the (repeats, folds, samples) of the split for a given task.
Source code in openml/tasks/task.py
get_train_test_split_indices
#
get_train_test_split_indices(fold: int = 0, repeat: int = 0, sample: int = 0) -> tuple[ndarray, ndarray]
Get the indices of the train and test splits for a given task.
Source code in openml/tasks/task.py
open_in_browser
#
Opens the OpenML web page corresponding to this object in your default browser.
Source code in openml/base.py
publish
#
publish() -> OpenMLBase
Publish the object on the OpenML server.
Source code in openml/base.py
push_tag
#
Annotates this entity with a tag on the server.
| PARAMETER | DESCRIPTION |
|---|---|
tag
|
Tag to attach to the flow.
TYPE:
|
remove_tag
#
Removes a tag from this entity on the server.
| PARAMETER | DESCRIPTION |
|---|---|
tag
|
Tag to attach to the flow.
TYPE:
|
url_for_id
classmethod
#
Return the OpenML URL for the object of the class entity with the given id.
OpenMLTask
#
OpenMLTask(task_id: int | None, task_type_id: TaskType, task_type: str, data_set_id: int, estimation_procedure_id: int = 1, estimation_procedure_type: str | None = None, estimation_parameters: dict[str, str] | None = None, evaluation_measure: str | None = None, data_splits_url: str | None = None)
Bases: OpenMLBase
OpenML Task object.
| PARAMETER | DESCRIPTION |
|---|---|
task_id
|
Refers to the unique identifier of OpenML task.
TYPE:
|
task_type_id
|
Refers to the type of OpenML task.
TYPE:
|
task_type
|
Refers to the OpenML task.
TYPE:
|
data_set_id
|
Refers to the data.
TYPE:
|
estimation_procedure_id
|
Refers to the type of estimates used.
TYPE:
|
estimation_procedure_type
|
Refers to the type of estimation procedure used for the OpenML task.
TYPE:
|
estimation_parameters
|
Estimation parameters used for the OpenML task.
TYPE:
|
evaluation_measure
|
Refers to the evaluation measure.
TYPE:
|
data_splits_url
|
Refers to the URL of the data splits used for the OpenML task.
TYPE:
|
Source code in openml/tasks/task.py
openml_url
property
#
The URL of the object on the server, if it was uploaded, else None.
download_split
#
download_split() -> OpenMLSplit
Download the OpenML split for a given task.
Source code in openml/tasks/task.py
get_dataset
#
get_dataset(**kwargs: Any) -> OpenMLDataset
Download dataset associated with task.
Accepts the same keyword arguments as the openml.datasets.get_dataset.
get_split_dimensions
#
Get the (repeats, folds, samples) of the split for a given task.
Source code in openml/tasks/task.py
get_train_test_split_indices
#
get_train_test_split_indices(fold: int = 0, repeat: int = 0, sample: int = 0) -> tuple[ndarray, ndarray]
Get the indices of the train and test splits for a given task.
Source code in openml/tasks/task.py
open_in_browser
#
Opens the OpenML web page corresponding to this object in your default browser.
Source code in openml/base.py
publish
#
publish() -> OpenMLBase
Publish the object on the OpenML server.
Source code in openml/base.py
push_tag
#
Annotates this entity with a tag on the server.
| PARAMETER | DESCRIPTION |
|---|---|
tag
|
Tag to attach to the flow.
TYPE:
|
remove_tag
#
Removes a tag from this entity on the server.
| PARAMETER | DESCRIPTION |
|---|---|
tag
|
Tag to attach to the flow.
TYPE:
|
url_for_id
classmethod
#
Return the OpenML URL for the object of the class entity with the given id.
TaskType
#
Bases: Enum
Possible task types as defined in OpenML.