Benchmark studies

How to list, download and upload benchmark studies. In contrast to benchmark suites which hold a list of tasks, studies hold a list of runs. As runs contain all information on flows and tasks, all required information about a study can be retrieved.

# License: BSD 3-Clause

import uuid

from sklearn.ensemble import RandomForestClassifier

import openml

Listing studies

  • Use the output_format parameter to select output type

  • Default gives dict, but we’ll use dataframe to obtain an easier-to-work-with data structure

studies = openml.study.list_studies(output_format="dataframe", status="all")
print(studies.head(n=10))
    id     alias main_entity_type  ...          status        creation_date creator
1    1   Study_1              run  ...  in_preparation  2015-10-20 15:27:26       2
2    2   Study_2              run  ...  in_preparation  2015-10-20 15:28:44       2
3    3   Study_3              run  ...  in_preparation  2015-10-20 15:34:39       2
5    5   Study_5              run  ...  in_preparation  2015-11-19 11:20:33     749
7    7   Study_7              run  ...  in_preparation  2016-01-06 17:49:36      64
8    8   Study_8              run  ...  in_preparation  2016-03-13 13:38:31    1135
10  10  Study_10              run  ...  in_preparation  2016-03-16 12:16:08     507
11  11  Study_11              run  ...  in_preparation  2016-03-22 16:48:06       1
12  12  Study_12              run  ...  in_preparation  2016-03-31 15:05:45    1195
13  13  Study_13              run  ...  in_preparation  2016-04-05 13:57:41      62

[10 rows x 7 columns]

Downloading studies

This is done based on the study ID.

study = openml.study.get_study(123)
print(study)
OpenML Study
============
ID..............: 123
Name............: Linear vs. Non Linear
Status..........: active
Main Entity Type: run
Study URL.......: https://www.openml.org/s/123
# of Data.......: 299
# of Tasks......: 299
# of Flows......: 5
# of Runs.......: 1693
Creator.........: https://www.openml.org/u/1
Upload Time.....: 2019-02-21 19:55:30

Studies also features a description:

print(study.description)
Comparison of linear and non-linear models.

[Jupyter Notebook](https://github.com/janvanrijn/linear-vs-non-linear/blob/master/notebook/Linear-vs-Non-Linear.ipynb)

Studies are a container for runs:

print(study.runs)
[9199877, 9199878, 9199879, 9199880, 9199881, 9199882, 9199883, 9199884, 9199885, 9199886, 9199887, 9199888, 9199889, 9199890, 9199891, 9199892, 9199893, 9199894, 9199895, 9199897, 9199898, 9199899, 9199900, 9199901, 9199902, 9199903, 9199904, 9199905, 9199906, 9199907, 9199908, 9199909, 9199910, 9199911, 9199912, 9199913, 9199914, 9199915, 9199916, 9199917, 9199918, 9199919, 9199920, 9199921, 9199922, 9199923, 9199924, 9199925, 9199926, 9199927, 9199928, 9199929, 9199930, 9199931, 9199932, 9199933, 9199934, 9199935, 9199936, 9199937, 9199938, 9199939, 9199940, 9199941, 9199942, 9199943, 9199944, 9199945, 9199946, 9199947, 9199948, 9199950, 9199951, 9199952, 9199953, 9199954, 9199955, 9199956, 9199957, 9199958, 9199959, 9199960, 9199961, 9199963, 9199964, 9199965, 9199966, 9199967, 9199968, 9199969, 9199970, 9199971, 9199972, 9199973, 9199974, 9199975, 9199976, 9199977, 9199978, 9199979, 9199981, 9199982, 9199983, 9199984, 9199985, 9199986, 9199987, 9199988, 9199989, 9199990, 9199991, 9199992, 9199993, 9199994, 9199995, 9199996, 9199997, 9199998, 9199999, 9200000, 9200001, 9200002, 9200003, 9200004, 9200006, 9200007, 9200008, 9200009, 9200010, 9200011, 9200012, 9200013, 9200014, 9200015, 9200016, 9200017, 9200018, 9200019, 9200020, 9200021, 9200022, 9200023, 9200024, 9200025, 9200026, 9200027, 9200028, 9200029, 9200030, 9200031, 9200032, 9200033, 9200034, 9200035, 9200036, 9200037, 9200038, 9200039, 9200040, 9200041, 9200042, 9200043, 9200044, 9200045, 9200046, 9200047, 9200048, 9200049, 9200050, 9200051, 9200052, 9200053, 9200054, 9200055, 9200056, 9200057, 9200058, 9200059, 9200060, 9200061, 9200062, 9200063, 9200064, 9200065, 9200066, 9200067, 9200068, 9200069, 9200070, 9200071, 9200072, 9200073, 9200074, 9200075, 9200076, 9200077, 9200078, 9200079, 9200080, 9200081, 9200082, 9200083, 9200084, 9200085, 9200086, 9200087, 9200088, 9200089, 9200090, 9200091, 9200092, 9200093, 9200094, 9200095, 9200096, 9200097, 9200098, 9200099, 9200100, 9200101, 9200102, 9200103, 9200104, 9200105, 9200106, 9200107, 9200108, 9200109, 9200110, 9200111, 9200112, 9200113, 9200114, 9200115, 9200116, 9200117, 9200118, 9200119, 9200120, 9200121, 9200122, 9200123, 9200124, 9200125, 9200126, 9200127, 9200128, 9200129, 9200130, 9200131, 9200132, 9200133, 9200134, 9200135, 9200136, 9200137, 9200138, 9200139, 9200140, 9200141, 9200142, 9200143, 9200144, 9200145, 9200146, 9200147, 9200148, 9200149, 9200150, 9200151, 9200152, 9200153, 9200154, 9200155, 9200156, 9200157, 9200158, 9200159, 9200160, 9200161, 9200162, 9200163, 9200164, 9200165, 9200166, 9200167, 9200168, 9200169, 9200171, 9200173, 9200174, 9200175, 9200176, 9200177, 9200178, 9200180, 9200181, 9200182, 9200183, 9200184, 9200185, 9200186, 9200187, 9200188, 9200189, 9200190, 9200191, 9200192, 9200193, 9200194, 9200195, 9200196, 9200197, 9200198, 9200199, 9200200, 9200201, 9200202, 9200203, 9200204, 9200205, 9200206, 9200207, 9200208, 9200209, 9200210, 9200211, 9200212, 9200213, 9200214, 9200215, 9200216, 9200217, 9200218, 9200219, 9200220, 9200221, 9200222, 9200223, 9200224, 9200225, 9200226, 9200227, 9200228, 9200229, 9200230, 9200231, 9200232, 9200233, 9200234, 9200235, 9200236, 9200237, 9200238, 9200239, 9200240, 9200241, 9200242, 9200243, 9200244, 9200245, 9200246, 9200247, 9200248, 9200249, 9200250, 9200251, 9200252, 9200253, 9200254, 9200255, 9200256, 9200257, 9200258, 9200259, 9200260, 9200261, 9200262, 9200263, 9200264, 9200265, 9200266, 9200267, 9200268, 9200269, 9200270, 9200271, 9200272, 9200273, 9200274, 9200275, 9200276, 9200277, 9200278, 9200279, 9200280, 9200281, 9200282, 9200283, 9200284, 9200285, 9200286, 9200287, 9200288, 9200289, 9200290, 9200291, 9200292, 9200293, 9200294, 9200295, 9200296, 9200297, 9200298, 9200299, 9200300, 9200301, 9200302, 9200303, 9200304, 9200305, 9200306, 9200307, 9200308, 9200310, 9200311, 9200312, 9200313, 9200314, 9200315, 9200316, 9200317, 9200318, 9200319, 9200320, 9200321, 9200322, 9200324, 9200325, 9200326, 9200327, 9200328, 9200329, 9200330, 9200331, 9200332, 9200333, 9200334, 9200335, 9200336, 9200337, 9200338, 9200339, 9200340, 9200341, 9200342, 9200343, 9200344, 9200345, 9200346, 9200347, 9200348, 9200349, 9200350, 9200351, 9200352, 9200353, 9200354, 9200355, 9200356, 9200357, 9200358, 9200359, 9200361, 9200362, 9200364, 9200365, 9200366, 9200367, 9200368, 9200369, 9200370, 9200371, 9200372, 9200373, 9200374, 9200375, 9200376, 9200377, 9200378, 9200379, 9200380, 9200382, 9200383, 9200384, 9200385, 9200386, 9200387, 9200388, 9200389, 9200390, 9200391, 9200392, 9200393, 9200394, 9200395, 9200396, 9200397, 9200398, 9200399, 9200400, 9200401, 9200402, 9200403, 9200404, 9200405, 9200406, 9200407, 9200408, 9200409, 9200410, 9200411, 9200412, 9200413, 9200414, 9200415, 9200416, 9200417, 9200418, 9200419, 9200420, 9200421, 9200422, 9200424, 9200425, 9200426, 9200427, 9200428, 9200429, 9200430, 9200431, 9200432, 9200433, 9200434, 9200435, 9200436, 9200437, 9200438, 9200439, 9200440, 9200441, 9200442, 9200443, 9200444, 9200445, 9200446, 9200447, 9200448, 9200449, 9200450, 9200451, 9200452, 9200453, 9200454, 9200455, 9200456, 9200457, 9200458, 9200459, 9200460, 9200461, 9200462, 9200463, 9200464, 9200465, 9200466, 9200467, 9200468, 9200469, 9200470, 9200471, 9200472, 9200473, 9200474, 9200475, 9200476, 9200477, 9200478, 9200479, 9200480, 9200481, 9200482, 9200483, 9200484, 9200485, 9200486, 9200487, 9200488, 9200489, 9200490, 9200491, 9200492, 9200493, 9200494, 9200495, 9200496, 9200497, 9200498, 9200499, 9200500, 9200501, 9200502, 9200503, 9200504, 9200505, 9200506, 9200507, 9200508, 9200509, 9200510, 9200511, 9200512, 9200513, 9200514, 9200515, 9200516, 9200517, 9200518, 9200519, 9200520, 9200521, 9200522, 9200523, 9200524, 9200525, 9200526, 9200527, 9200528, 9200529, 9200530, 9200531, 9200532, 9200533, 9200534, 9200535, 9200536, 9200537, 9200538, 9200539, 9200540, 9200541, 9200542, 9200543, 9200544, 9200545, 9200546, 9200547, 9200548, 9200549, 9200550, 9200551, 9200552, 9200553, 9200554, 9200555, 9200556, 9200557, 9200558, 9200559, 9200560, 9200561, 9200562, 9200563, 9200564, 9200565, 9200566, 9200567, 9200568, 9200569, 9200570, 9200571, 9200572, 9200573, 9200574, 9200575, 9200576, 9200577, 9200578, 9200579, 9200580, 9200581, 9200582, 9200583, 9200584, 9200585, 9200586, 9200587, 9200588, 9200589, 9200590, 9200591, 9200592, 9200593, 9200594, 9200595, 9200596, 9200597, 9200598, 9200599, 9200600, 9200601, 9200602, 9200603, 9200604, 9200605, 9200606, 9200607, 9200608, 9200609, 9200610, 9200611, 9200612, 9200613, 9200614, 9200615, 9200616, 9200617, 9200618, 9200619, 9200620, 9200621, 9200622, 9200623, 9200624, 9200625, 9200626, 9200627, 9200628, 9200629, 9200630, 9200631, 9200632, 9200633, 9200634, 9200635, 9200636, 9200637, 9200638, 9200639, 9200640, 9200641, 9200642, 9200643, 9200644, 9200645, 9200646, 9200647, 9200648, 9200649, 9200650, 9200651, 9200652, 9200653, 9200654, 9200655, 9200656, 9200657, 9200658, 9200659, 9200660, 9200661, 9200662, 9200663, 9200664, 9200665, 9200666, 9200667, 9200668, 9200669, 9200670, 9200671, 9200672, 9200673, 9200674, 9200675, 9200676, 9200677, 9200678, 9200679, 9200680, 9200681, 9200682, 9200683, 9200684, 9200685, 9200686, 9200687, 9200688, 9200689, 9200690, 9200691, 9200692, 9200693, 9200694, 9200695, 9200696, 9200697, 9200698, 9200699, 9200700, 9200701, 9200702, 9200703, 9200704, 9200705, 9200706, 9200707, 9200708, 9200709, 9200710, 9200711, 9200712, 9200713, 9200714, 9200715, 9200716, 9200717, 9200719, 9200720, 9200721, 9200722, 9200723, 9200724, 9200725, 9200726, 9200727, 9200728, 9200729, 9200730, 9200731, 9200732, 9200733, 9200734, 9200735, 9200736, 9200737, 9200738, 9200739, 9200740, 9200741, 9200742, 9200743, 9200744, 9200745, 9200746, 9200747, 9200748, 9200749, 9200750, 9200751, 9200752, 9200753, 9200754, 9200755, 9200756, 9200757, 9200758, 9200759, 9200760, 9200761, 9200762, 9200763, 9200764, 9200765, 9200766, 9200767, 9200768, 9200769, 9200770, 9200771, 9200772, 9200773, 9200774, 9200775, 9200776, 9200778, 9200779, 9200780, 9200781, 9200782, 9200783, 9200784, 9200785, 9200786, 9200787, 9200788, 9200789, 9200790, 9200791, 9200792, 9200793, 9200794, 9200795, 9200796, 9200797, 9200798, 9200799, 9200800, 9200801, 9200802, 9200803, 9200804, 9200806, 9200807, 9200808, 9200809, 9200810, 9200811, 9200812, 9200813, 9200814, 9200815, 9200816, 9200817, 9200818, 9200819, 9200820, 9200821, 9200822, 9200823, 9200824, 9200825, 9200826, 9200827, 9200828, 9200829, 9200830, 9200831, 9200832, 9200833, 9200834, 9200835, 9200836, 9200837, 9200838, 9200839, 9200840, 9200841, 9200842, 9200843, 9200844, 9200845, 9200846, 9200847, 9200848, 9200849, 9200850, 9200851, 9200852, 9200853, 9200854, 9200855, 9200856, 9200857, 9200858, 9200859, 9200860, 9200861, 9200862, 9200863, 9200864, 9200865, 9200866, 9200867, 9200868, 9200869, 9200870, 9200871, 9200872, 9200873, 9200874, 9200875, 9200876, 9200877, 9200878, 9200879, 9200880, 9200881, 9200882, 9200883, 9200884, 9200885, 9200886, 9200887, 9200888, 9200889, 9200890, 9200891, 9200892, 9200893, 9200894, 9200895, 9200896, 9200897, 9200898, 9200899, 9200900, 9200901, 9200902, 9200903, 9200904, 9200905, 9200906, 9200907, 9200908, 9200909, 9200910, 9200911, 9200912, 9200913, 9200914, 9200915, 9200916, 9200917, 9200918, 9200919, 9200920, 9200921, 9200922, 9200923, 9200924, 9200925, 9200926, 9200927, 9200928, 9200929, 9200930, 9200931, 9200932, 9200933, 9200934, 9200935, 9200936, 9200937, 9200938, 9200939, 9200940, 9200941, 9200942, 9200943, 9200944, 9200945, 9200946, 9200947, 9200948, 9200949, 9200950, 9200951, 9200952, 9200953, 9200954, 9200955, 9200956, 9200957, 9200958, 9200959, 9200960, 9200961, 9200962, 9200963, 9200964, 9200965, 9200966, 9200967, 9200968, 9200969, 9200970, 9200971, 9200972, 9200973, 9200974, 9200975, 9200976, 9200977, 9200978, 9200979, 9200980, 9200981, 9200982, 9200983, 9200984, 9200985, 9200986, 9200987, 9200988, 9200989, 9200990, 9200991, 9200993, 9200994, 9200995, 9200996, 9200997, 9200998, 9200999, 9201000, 9201001, 9201002, 9201003, 9201004, 9201005, 9201006, 9201007, 9201008, 9201009, 9201010, 9201011, 9201012, 9201013, 9201014, 9201015, 9201016, 9201017, 9201018, 9201019, 9201020, 9201021, 9201022, 9201023, 9201024, 9201025, 9201026, 9201027, 9201028, 9201029, 9201030, 9201031, 9201032, 9201033, 9201034, 9201035, 9201036, 9201037, 9201038, 9201039, 9201040, 9201041, 9201042, 9201043, 9201044, 9201045, 9201046, 9201047, 9201048, 9201049, 9201050, 9201051, 9201052, 9201053, 9201054, 9201055, 9201056, 9201057, 9201058, 9201059, 9201060, 9201061, 9201062, 9201063, 9201064, 9201065, 9201066, 9201067, 9201068, 9201069, 9201070, 9201071, 9201072, 9201073, 9201074, 9201075, 9201076, 9201077, 9201078, 9201079, 9201080, 9201081, 9201082, 9201083, 9201084, 9201085, 9201086, 9201087, 9201088, 9201089, 9201090, 9201091, 9201092, 9201093, 9201094, 9201095, 9201096, 9201097, 9201098, 9201099, 9201100, 9201101, 9201102, 9201103, 9201104, 9201105, 9201106, 9201107, 9201108, 9201109, 9201110, 9201111, 9201112, 9201113, 9201114, 9201115, 9201116, 9201117, 9201118, 9201119, 9201120, 9201121, 9201122, 9201124, 9201125, 9201126, 9201127, 9201128, 9201129, 9201130, 9201131, 9201132, 9201133, 9201134, 9201135, 9201136, 9201137, 9201138, 9201139, 9201140, 9201141, 9201142, 9201143, 9201144, 9201145, 9201146, 9201147, 9201148, 9201149, 9201150, 9201151, 9201152, 9201153, 9201154, 9201155, 9201156, 9201157, 9201158, 9201159, 9201160, 9201161, 9201162, 9201163, 9201164, 9201165, 9201166, 9201167, 9201168, 9201169, 9201170, 9201171, 9201172, 9201173, 9201174, 9201175, 9201176, 9201177, 9201178, 9201179, 9201180, 9201181, 9201182, 9201183, 9201184, 9201185, 9201186, 9201187, 9201188, 9201189, 9201190, 9201191, 9201192, 9201193, 9201194, 9201195, 9201196, 9201197, 9201198, 9201199, 9201200, 9201201, 9201202, 9201203, 9201204, 9201205, 9201206, 9201207, 9201208, 9201209, 9201210, 9201211, 9201212, 9201213, 9201214, 9201215, 9201216, 9201217, 9201218, 9201219, 9201220, 9201221, 9201222, 9201223, 9201224, 9201225, 9201226, 9201227, 9201228, 9201229, 9201230, 9201231, 9201232, 9201233, 9201234, 9201235, 9201236, 9201237, 9201238, 9201239, 9201240, 9201241, 9201242, 9201243, 9201244, 9201245, 9201246, 9201247, 9201248, 9201249, 9201250, 9201251, 9201252, 9201253, 9201254, 9201255, 9201256, 9201257, 9201258, 9201259, 9201260, 9201261, 9201262, 9201263, 9201264, 9201265, 9201266, 9201267, 9201268, 9201269, 9201270, 9201271, 9201272, 9201273, 9201274, 9201275, 9201276, 9201277, 9201278, 9201279, 9201280, 9201281, 9201282, 9201283, 9201284, 9201285, 9201286, 9201287, 9201288, 9201289, 9201290, 9201291, 9201292, 9201293, 9201294, 9201295, 9201296, 9201297, 9201298, 9201299, 9201300, 9201301, 9201302, 9201303, 9201304, 9201305, 9201306, 9201307, 9201308, 9201309, 9201310, 9201311, 9201312, 9201313, 9201314, 9201315, 9201316, 9201317, 9201318, 9201319, 9201320, 9201321, 9201322, 9201323, 9201324, 9201325, 9201326, 9201327, 9201328, 9201329, 9201330, 9201331, 9201332, 9201333, 9201334, 9201335, 9201336, 9201337, 9201338, 9201339, 9201340, 9201341, 9201342, 9201343, 9201344, 9201345, 9201346, 9201347, 9201348, 9201349, 9201350, 9201351, 9201352, 9201353, 9201354, 9201355, 9201356, 9201357, 9201358, 9201359, 9201360, 9201361, 9201362, 9201363, 9201364, 9201365, 9201366, 9201367, 9201368, 9201369, 9201370, 9201371, 9201372, 9201373, 9201374, 9201375, 9201376, 9201377, 9201378, 9201379, 9201380, 9201381, 9201382, 9201384, 9201385, 9201386, 9201387, 9201388, 9201389, 9201390, 9201391, 9201392, 9201393, 9201394, 9201395, 9201396, 9201397, 9201398, 9201399, 9201400, 9201401, 9201402, 9201403, 9201404, 9201405, 9201406, 9201407, 9201408, 9201409, 9201410, 9201411, 9201412, 9201413, 9201414, 9201415, 9201416, 9201417, 9201418, 9201419, 9201420, 9201422, 9201423, 9201424, 9201425, 9201426, 9201427, 9201428, 9201429, 9201430, 9201431, 9201432, 9201433, 9201434, 9201435, 9201436, 9201437, 9201438, 9201439, 9201440, 9201441, 9201442, 9201443, 9201444, 9201445, 9201446, 9201447, 9201448, 9201449, 9201450, 9201451, 9201452, 9201453, 9201454, 9201455, 9201456, 9201457, 9201458, 9201459, 9201460, 9201461, 9201462, 9201463, 9201464, 9201465, 9201466, 9201467, 9201468, 9201469, 9201470, 9201471, 9201472, 9201473, 9201474, 9201475, 9201476, 9201477, 9201478, 9201479, 9201480, 9201481, 9201482, 9201483, 9201484, 9201485, 9201486, 9201487, 9201488, 9201489, 9201490, 9201491, 9201492, 9201493, 9201494, 9201495, 9201496, 9201497, 9201498, 9201499, 9201500, 9201501, 9201502, 9201503, 9201504, 9201505, 9201506, 9201507, 9201508, 9201509, 9201510, 9201511, 9201512, 9201514, 9201515, 9201516, 9201517, 9201518, 9201519, 9201520, 9201521, 9201522, 9201523, 9201524, 9201525, 9201526, 9201527, 9201528, 9201529, 9201530, 9201531, 9201532, 9201533, 9201534, 9201535, 9201536, 9201537, 9201538, 9201539, 9201540, 9201541, 9201542, 9201543, 9201544, 9201545, 9201546, 9201547, 9201548, 9201549, 9201550, 9201551, 9201552, 9201553, 9201554, 9201555, 9201556, 9201557, 9201558, 9201559, 9201560, 9201561, 9201562, 9201563, 9201564, 9201565, 9201566, 9201567, 9201568, 9201569, 9201570, 9201571, 9201572, 9201573, 9201574, 9201575, 9201576, 9201577, 9201578, 9201579, 9201580, 9201581, 9201582, 9201583, 9201584, 9201585, 9201586, 9201587, 9201588, 9201589, 9201590, 9201591]

And we can use the evaluation listing functionality to learn more about the evaluations available for the conducted runs:

evaluations = openml.evaluations.list_evaluations(
    function="predictive_accuracy",
    output_format="dataframe",
    study=study.study_id,
)
print(evaluations.head())
    run_id  task_id  setup_id  ...     value values  array_data
0  9199877        3   7130157  ...  0.974969   None        None
1  9199878        6   7130158  ...  0.716500   None        None
2  9199879        6   7130159  ...  0.967200   None        None
3  9199880       11   7130158  ...  0.886400   None        None
4  9199881       11   7130159  ...  0.976000   None        None

[5 rows x 14 columns]

We’ll use the test server for the rest of this tutorial.

Warning

This example uploads data. For that reason, this example connects to the test server at test.openml.org. This prevents the main server from crowding with example datasets, tasks, runs, and so on. The use of this test server can affect behaviour and performance of the OpenML-Python API.

openml.config.start_using_configuration_for_example()
/home/runner/work/openml-python/openml-python/examples/30_extended/study_tutorial.py:65: UserWarning: Switching to the test server https://test.openml.org/api/v1/xml to not upload results to the live server. Using the test server may result in reduced performance of the API!
  openml.config.start_using_configuration_for_example()

Uploading studies

Creating a study is as simple as creating any kind of other OpenML entity. In this examples we’ll create a few runs for the OpenML-100 benchmark suite which is available on the OpenML test server.

# Model to be used
clf = RandomForestClassifier()

# We'll create a study with one run on 3 datasets present in the suite
tasks = [115, 259, 307]

# To verify
# https://test.openml.org/api/v1/study/1
suite = openml.study.get_suite("OpenML100")
print(all([t_id in suite.tasks for t_id in tasks]))

run_ids = []
for task_id in tasks:
    task = openml.tasks.get_task(task_id)
    run = openml.runs.run_model_on_task(clf, task)
    run.publish()
    run_ids.append(run.run_id)

# The study needs a machine-readable and unique alias. To obtain this,
# we simply generate a random uuid.
alias = uuid.uuid4().hex

new_study = openml.study.create_study(
    name="Test-Study",
    description="Test study for the Python tutorial on studies",
    run_ids=run_ids,
    alias=alias,
    benchmark_suite=suite.study_id,
)
new_study.publish()
print(new_study)
True
OpenML Study
============
ID..............: 196
Name............: Test-Study
Status..........: None
Main Entity Type: run
Study URL.......: https://test.openml.org/s/196
# of Runs.......: 3
openml.config.stop_using_configuration_for_example()

Total running time of the script: (0 minutes 25.891 seconds)

Gallery generated by Sphinx-Gallery