functions
openml.evaluations.functions
#
__list_evaluations
#
__list_evaluations(api_call: str) -> list[OpenMLEvaluation]
Helper function to parse API calls which are lists of runs
Source code in openml/evaluations/functions.py
list_estimation_procedures
#
Return list of evaluation procedures available.
The function performs an API call to retrieve the entire list of evaluation procedures' names that are available.
Returns#
list
Source code in openml/evaluations/functions.py
list_evaluation_measures
#
Return list of evaluation measures available.
The function performs an API call to retrieve the entire list of evaluation measures that are available.
Returns#
list
Source code in openml/evaluations/functions.py
list_evaluations
#
list_evaluations(function: str, offset: int | None = None, size: int | None = None, tasks: list[str | int] | None = None, setups: list[str | int] | None = None, flows: list[str | int] | None = None, runs: list[str | int] | None = None, uploaders: list[str | int] | None = None, tag: str | None = None, study: int | None = None, per_fold: bool | None = None, sort_order: str | None = None, output_format: Literal['object', 'dataframe'] = 'object') -> dict[int, OpenMLEvaluation] | DataFrame
List all run-evaluation pairs matching all of the given filters.
(Supports large amount of results)
Parameters#
function : str
the evaluation function. e.g., predictive_accuracy
offset : int, optional
the number of runs to skip, starting from the first
size : int, default 10000
The maximum number of runs to show.
If set to None
, it returns all the results.
list[int,str], optional
the list of task IDs
setups: list[int,str], optional the list of setup IDs flows : list[int,str], optional the list of flow IDs runs :list[int,str], optional the list of run IDs uploaders : list[int,str], optional the list of uploader IDs tag : str, optional filter evaluation based on given tag
study : int, optional
per_fold : bool, optional
str, optional
order of sorting evaluations, ascending ("asc") or descending ("desc")
str, optional (default='object')
The parameter decides the format of the output. - If 'object' the output is a dict of OpenMLEvaluation objects - If 'dataframe' the output is a pandas DataFrame
Returns#
dict or dataframe
Source code in openml/evaluations/functions.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
list_evaluations_setups
#
list_evaluations_setups(function: str, offset: int | None = None, size: int | None = None, tasks: list | None = None, setups: list | None = None, flows: list | None = None, runs: list | None = None, uploaders: list | None = None, tag: str | None = None, per_fold: bool | None = None, sort_order: str | None = None, parameters_in_separate_columns: bool = False) -> DataFrame
List all run-evaluation pairs matching all of the given filters and their hyperparameter settings.
Parameters#
function : str the evaluation function. e.g., predictive_accuracy offset : int, optional the number of runs to skip, starting from the first size : int, optional the maximum number of runs to show tasks : list[int], optional the list of task IDs setups: list[int], optional the list of setup IDs flows : list[int], optional the list of flow IDs runs : list[int], optional the list of run IDs uploaders : list[int], optional the list of uploader IDs tag : str, optional filter evaluation based on given tag per_fold : bool, optional sort_order : str, optional order of sorting evaluations, ascending ("asc") or descending ("desc") parameters_in_separate_columns: bool, optional (default= False) Returns hyperparameters in separate columns if set to True. Valid only for a single flow
Returns#
dataframe with hyperparameter settings as a list of tuples.
Source code in openml/evaluations/functions.py
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
|