setups
openml.setups
#
OpenMLParameter
#
OpenMLParameter(input_id: int, flow_id: int, flow_name: str, full_name: str, parameter_name: str, data_type: str, default_value: str, value: str)
Parameter object (used in setup).
Parameters#
input_id : int The input id from the openml database flow id : int The flow to which this parameter is associated flow name : str The name of the flow (no version number) to which this parameter is associated full_name : str The name of the flow and parameter combined parameter_name : str The name of the parameter data_type : str The datatype of the parameter. generally unused for sklearn flows default_value : str The default value. For sklearn parameters, this is unknown and a default value is selected arbitrarily value : str If the parameter was set, the value that it was set to.
Source code in openml/setups/setup.py
OpenMLSetup
#
Setup object (a.k.a. Configuration).
Parameters#
setup_id : int The OpenML setup id flow_id : int The flow that it is build upon parameters : dict The setting of the parameters
Source code in openml/setups/setup.py
get_setup
#
get_setup(setup_id: int) -> OpenMLSetup
Downloads the setup (configuration) description from OpenML and returns a structured object
Parameters#
setup_id : int The Openml setup_id
Returns#
OpenMLSetup (an initialized openml setup object)
Source code in openml/setups/functions.py
initialize_model
#
Initialized a model based on a setup_id (i.e., using the exact same parameter settings)
Parameters#
setup_id : int
The Openml setup_id
strict_version: bool (default=True)
See flow_to_model
strict_version.
Returns#
model
Source code in openml/setups/functions.py
list_setups
#
list_setups(offset: int | None = None, size: int | None = None, flow: int | None = None, tag: str | None = None, setup: Iterable[int] | None = None, output_format: Literal['object', 'dataframe'] = 'object') -> dict[int, OpenMLSetup] | DataFrame
List all setups matching all of the given filters.
Parameters#
offset : int, optional size : int, optional flow : int, optional tag : str, optional setup : Iterable[int], optional output_format: str, optional (default='object') The parameter decides the format of the output. - If 'dataframe' the output is a pandas DataFrame - If 'object' the output is a dictionary of OpenMLSetup objects
Returns#
dict or dataframe
Source code in openml/setups/functions.py
setup_exists
#
setup_exists(flow: OpenMLFlow) -> int
Checks whether a hyperparameter configuration already exists on the server.
Parameters#
flow : OpenMLFlow The openml flow object. Should have flow id present for the main flow and all subflows (i.e., it should be downloaded from the server by means of flow.get, and not instantiated locally)
Returns#
setup_id : int setup id iff exists, False otherwise