functions
openml.setups.functions
#
__list_setups
#
__list_setups(api_call: str) -> list[OpenMLSetup]
Helper function to parse API calls which are lists of setups
Source code in openml/setups/functions.py
get_setup
#
get_setup(setup_id: int) -> OpenMLSetup
Downloads the setup (configuration) description from OpenML and returns a structured object
Parameters#
setup_id : int The Openml setup_id
Returns#
OpenMLSetup (an initialized openml setup object)
Source code in openml/setups/functions.py
initialize_model
#
Initialized a model based on a setup_id (i.e., using the exact same parameter settings)
Parameters#
setup_id : int
The Openml setup_id
strict_version: bool (default=True)
See flow_to_model
strict_version.
Returns#
model
Source code in openml/setups/functions.py
list_setups
#
list_setups(offset: int | None = None, size: int | None = None, flow: int | None = None, tag: str | None = None, setup: Iterable[int] | None = None, output_format: Literal['object', 'dataframe'] = 'object') -> dict[int, OpenMLSetup] | DataFrame
List all setups matching all of the given filters.
Parameters#
offset : int, optional size : int, optional flow : int, optional tag : str, optional setup : Iterable[int], optional output_format: str, optional (default='object') The parameter decides the format of the output. - If 'dataframe' the output is a pandas DataFrame - If 'object' the output is a dictionary of OpenMLSetup objects
Returns#
dict or dataframe
Source code in openml/setups/functions.py
setup_exists
#
setup_exists(flow: OpenMLFlow) -> int
Checks whether a hyperparameter configuration already exists on the server.
Parameters#
flow : OpenMLFlow The openml flow object. Should have flow id present for the main flow and all subflows (i.e., it should be downloaded from the server by means of flow.get, and not instantiated locally)
Returns#
setup_id : int setup id iff exists, False otherwise