task
openml.tasks.task
#
OpenMLClassificationTask
#
OpenMLClassificationTask(task_type_id: TaskType, task_type: str, data_set_id: int, target_name: str, estimation_procedure_id: int = 1, estimation_procedure_type: str | None = None, estimation_parameters: dict[str, str] | None = None, evaluation_measure: str | None = None, data_splits_url: str | None = None, task_id: int | None = None, class_labels: list[str] | None = None, cost_matrix: ndarray | None = None)
Bases: OpenMLSupervisedTask
OpenML Classification object.
Parameters#
task_type_id : TaskType ID of the Classification task type. task_type : str Name of the Classification task type. data_set_id : int ID of the OpenML dataset associated with the Classification task. target_name : str Name of the target variable. estimation_procedure_id : int, default=None ID of the estimation procedure for the Classification task. estimation_procedure_type : str, default=None Type of the estimation procedure. estimation_parameters : dict, default=None Estimation parameters for the Classification task. evaluation_measure : str, default=None Name of the evaluation measure. data_splits_url : str, default=None URL of the data splits for the Classification task. task_id : Union[int, None] ID of the Classification task (if it already exists on OpenML). class_labels : List of str, default=None A list of class labels (for classification tasks). cost_matrix : array, default=None A cost matrix (for classification tasks).
Source code in openml/tasks/task.py
estimation_parameters
property
writable
#
Return the estimation parameters for the task.
openml_url
property
#
The URL of the object on the server, if it was uploaded, else None.
download_split
#
download_split() -> OpenMLSplit
Download the OpenML split for a given task.
Source code in openml/tasks/task.py
get_X_and_y
#
Get data associated with the current task.
Returns#
tuple - X and y
Source code in openml/tasks/task.py
get_dataset
#
get_dataset(**kwargs: Any) -> OpenMLDataset
Download dataset associated with task.
Accepts the same keyword arguments as the openml.datasets.get_dataset
.
get_split_dimensions
#
Get the (repeats, folds, samples) of the split for a given task.
Source code in openml/tasks/task.py
get_train_test_split_indices
#
get_train_test_split_indices(fold: int = 0, repeat: int = 0, sample: int = 0) -> tuple[ndarray, ndarray]
Get the indices of the train and test splits for a given task.
Source code in openml/tasks/task.py
open_in_browser
#
Opens the OpenML web page corresponding to this object in your default browser.
Source code in openml/base.py
publish
#
publish() -> OpenMLBase
Publish the object on the OpenML server.
Source code in openml/base.py
push_tag
#
remove_tag
#
url_for_id
classmethod
#
Return the OpenML URL for the object of the class entity with the given id.
OpenMLClusteringTask
#
OpenMLClusteringTask(task_type_id: TaskType, task_type: str, data_set_id: int, estimation_procedure_id: int = 17, task_id: int | None = None, estimation_procedure_type: str | None = None, estimation_parameters: dict[str, str] | None = None, data_splits_url: str | None = None, evaluation_measure: str | None = None, target_name: str | None = None)
Bases: OpenMLTask
OpenML Clustering object.
Parameters#
task_type_id : TaskType Task type ID of the OpenML clustering task. task_type : str Task type of the OpenML clustering task. data_set_id : int ID of the OpenML dataset used in clustering the task. estimation_procedure_id : int, default=None ID of the OpenML estimation procedure. task_id : Union[int, None] ID of the OpenML clustering task. estimation_procedure_type : str, default=None Type of the OpenML estimation procedure used in the clustering task. estimation_parameters : dict, default=None Parameters used by the OpenML estimation procedure. data_splits_url : str, default=None URL of the OpenML data splits for the clustering task. evaluation_measure : str, default=None Evaluation measure used in the clustering task. target_name : str, default=None Name of the target feature (class) that is not part of the feature set for the clustering task.
Source code in openml/tasks/task.py
openml_url
property
#
The URL of the object on the server, if it was uploaded, else None.
download_split
#
download_split() -> OpenMLSplit
Download the OpenML split for a given task.
Source code in openml/tasks/task.py
get_dataset
#
get_dataset(**kwargs: Any) -> OpenMLDataset
Download dataset associated with task.
Accepts the same keyword arguments as the openml.datasets.get_dataset
.
get_split_dimensions
#
Get the (repeats, folds, samples) of the split for a given task.
Source code in openml/tasks/task.py
get_train_test_split_indices
#
get_train_test_split_indices(fold: int = 0, repeat: int = 0, sample: int = 0) -> tuple[ndarray, ndarray]
Get the indices of the train and test splits for a given task.
Source code in openml/tasks/task.py
open_in_browser
#
Opens the OpenML web page corresponding to this object in your default browser.
Source code in openml/base.py
publish
#
publish() -> OpenMLBase
Publish the object on the OpenML server.
Source code in openml/base.py
push_tag
#
remove_tag
#
url_for_id
classmethod
#
Return the OpenML URL for the object of the class entity with the given id.
OpenMLLearningCurveTask
#
OpenMLLearningCurveTask(task_type_id: TaskType, task_type: str, data_set_id: int, target_name: str, estimation_procedure_id: int = 13, estimation_procedure_type: str | None = None, estimation_parameters: dict[str, str] | None = None, data_splits_url: str | None = None, task_id: int | None = None, evaluation_measure: str | None = None, class_labels: list[str] | None = None, cost_matrix: ndarray | None = None)
Bases: OpenMLClassificationTask
OpenML Learning Curve object.
Parameters#
task_type_id : TaskType ID of the Learning Curve task. task_type : str Name of the Learning Curve task. data_set_id : int ID of the dataset that this task is associated with. target_name : str Name of the target feature in the dataset. estimation_procedure_id : int, default=None ID of the estimation procedure to use for evaluating models. estimation_procedure_type : str, default=None Type of the estimation procedure. estimation_parameters : dict, default=None Additional parameters for the estimation procedure. data_splits_url : str, default=None URL of the file containing the data splits for Learning Curve task. task_id : Union[int, None] ID of the Learning Curve task. evaluation_measure : str, default=None Name of the evaluation measure to use for evaluating models. class_labels : list of str, default=None Class labels for Learning Curve tasks. cost_matrix : numpy array, default=None Cost matrix for Learning Curve tasks.
Source code in openml/tasks/task.py
estimation_parameters
property
writable
#
Return the estimation parameters for the task.
openml_url
property
#
The URL of the object on the server, if it was uploaded, else None.
download_split
#
download_split() -> OpenMLSplit
Download the OpenML split for a given task.
Source code in openml/tasks/task.py
get_X_and_y
#
Get data associated with the current task.
Returns#
tuple - X and y
Source code in openml/tasks/task.py
get_dataset
#
get_dataset(**kwargs: Any) -> OpenMLDataset
Download dataset associated with task.
Accepts the same keyword arguments as the openml.datasets.get_dataset
.
get_split_dimensions
#
Get the (repeats, folds, samples) of the split for a given task.
Source code in openml/tasks/task.py
get_train_test_split_indices
#
get_train_test_split_indices(fold: int = 0, repeat: int = 0, sample: int = 0) -> tuple[ndarray, ndarray]
Get the indices of the train and test splits for a given task.
Source code in openml/tasks/task.py
open_in_browser
#
Opens the OpenML web page corresponding to this object in your default browser.
Source code in openml/base.py
publish
#
publish() -> OpenMLBase
Publish the object on the OpenML server.
Source code in openml/base.py
push_tag
#
remove_tag
#
url_for_id
classmethod
#
Return the OpenML URL for the object of the class entity with the given id.
OpenMLRegressionTask
#
OpenMLRegressionTask(task_type_id: TaskType, task_type: str, data_set_id: int, target_name: str, estimation_procedure_id: int = 7, estimation_procedure_type: str | None = None, estimation_parameters: dict[str, str] | None = None, data_splits_url: str | None = None, task_id: int | None = None, evaluation_measure: str | None = None)
Bases: OpenMLSupervisedTask
OpenML Regression object.
Parameters#
task_type_id : TaskType Task type ID of the OpenML Regression task. task_type : str Task type of the OpenML Regression task. data_set_id : int ID of the OpenML dataset. target_name : str Name of the target feature used in the Regression task. estimation_procedure_id : int, default=None ID of the OpenML estimation procedure. estimation_procedure_type : str, default=None Type of the OpenML estimation procedure. estimation_parameters : dict, default=None Parameters used by the OpenML estimation procedure. data_splits_url : str, default=None URL of the OpenML data splits for the Regression task. task_id : Union[int, None] ID of the OpenML Regression task. evaluation_measure : str, default=None Evaluation measure used in the Regression task.
Source code in openml/tasks/task.py
estimation_parameters
property
writable
#
Return the estimation parameters for the task.
openml_url
property
#
The URL of the object on the server, if it was uploaded, else None.
download_split
#
download_split() -> OpenMLSplit
Download the OpenML split for a given task.
Source code in openml/tasks/task.py
get_X_and_y
#
Get data associated with the current task.
Returns#
tuple - X and y
Source code in openml/tasks/task.py
get_dataset
#
get_dataset(**kwargs: Any) -> OpenMLDataset
Download dataset associated with task.
Accepts the same keyword arguments as the openml.datasets.get_dataset
.
get_split_dimensions
#
Get the (repeats, folds, samples) of the split for a given task.
Source code in openml/tasks/task.py
get_train_test_split_indices
#
get_train_test_split_indices(fold: int = 0, repeat: int = 0, sample: int = 0) -> tuple[ndarray, ndarray]
Get the indices of the train and test splits for a given task.
Source code in openml/tasks/task.py
open_in_browser
#
Opens the OpenML web page corresponding to this object in your default browser.
Source code in openml/base.py
publish
#
publish() -> OpenMLBase
Publish the object on the OpenML server.
Source code in openml/base.py
push_tag
#
remove_tag
#
url_for_id
classmethod
#
Return the OpenML URL for the object of the class entity with the given id.
OpenMLSupervisedTask
#
OpenMLSupervisedTask(task_type_id: TaskType, task_type: str, data_set_id: int, target_name: str, estimation_procedure_id: int = 1, estimation_procedure_type: str | None = None, estimation_parameters: dict[str, str] | None = None, evaluation_measure: str | None = None, data_splits_url: str | None = None, task_id: int | None = None)
Bases: OpenMLTask
, ABC
OpenML Supervised Classification object.
Parameters#
task_type_id : TaskType ID of the task type. task_type : str Name of the task type. data_set_id : int ID of the OpenML dataset associated with the task. target_name : str Name of the target feature (the class variable). estimation_procedure_id : int, default=None ID of the estimation procedure for the task. estimation_procedure_type : str, default=None Type of the estimation procedure for the task. estimation_parameters : dict, default=None Estimation parameters for the task. evaluation_measure : str, default=None Name of the evaluation measure for the task. data_splits_url : str, default=None URL of the data splits for the task. task_id: Union[int, None] Refers to the unique identifier of task.
Source code in openml/tasks/task.py
estimation_parameters
property
writable
#
Return the estimation parameters for the task.
openml_url
property
#
The URL of the object on the server, if it was uploaded, else None.
download_split
#
download_split() -> OpenMLSplit
Download the OpenML split for a given task.
Source code in openml/tasks/task.py
get_X_and_y
#
Get data associated with the current task.
Returns#
tuple - X and y
Source code in openml/tasks/task.py
get_dataset
#
get_dataset(**kwargs: Any) -> OpenMLDataset
Download dataset associated with task.
Accepts the same keyword arguments as the openml.datasets.get_dataset
.
get_split_dimensions
#
Get the (repeats, folds, samples) of the split for a given task.
Source code in openml/tasks/task.py
get_train_test_split_indices
#
get_train_test_split_indices(fold: int = 0, repeat: int = 0, sample: int = 0) -> tuple[ndarray, ndarray]
Get the indices of the train and test splits for a given task.
Source code in openml/tasks/task.py
open_in_browser
#
Opens the OpenML web page corresponding to this object in your default browser.
Source code in openml/base.py
publish
#
publish() -> OpenMLBase
Publish the object on the OpenML server.
Source code in openml/base.py
push_tag
#
remove_tag
#
url_for_id
classmethod
#
Return the OpenML URL for the object of the class entity with the given id.
OpenMLTask
#
OpenMLTask(task_id: int | None, task_type_id: TaskType, task_type: str, data_set_id: int, estimation_procedure_id: int = 1, estimation_procedure_type: str | None = None, estimation_parameters: dict[str, str] | None = None, evaluation_measure: str | None = None, data_splits_url: str | None = None)
Bases: OpenMLBase
OpenML Task object.
Parameters#
task_id: Union[int, None] Refers to the unique identifier of OpenML task. task_type_id: TaskType Refers to the type of OpenML task. task_type: str Refers to the OpenML task. data_set_id: int Refers to the data. estimation_procedure_id: int Refers to the type of estimates used. estimation_procedure_type: str, default=None Refers to the type of estimation procedure used for the OpenML task. estimation_parameters: [Dict[str, str]], default=None Estimation parameters used for the OpenML task. evaluation_measure: str, default=None Refers to the evaluation measure. data_splits_url: str, default=None Refers to the URL of the data splits used for the OpenML task.
Source code in openml/tasks/task.py
openml_url
property
#
The URL of the object on the server, if it was uploaded, else None.
download_split
#
download_split() -> OpenMLSplit
Download the OpenML split for a given task.
Source code in openml/tasks/task.py
get_dataset
#
get_dataset(**kwargs: Any) -> OpenMLDataset
Download dataset associated with task.
Accepts the same keyword arguments as the openml.datasets.get_dataset
.
get_split_dimensions
#
Get the (repeats, folds, samples) of the split for a given task.
Source code in openml/tasks/task.py
get_train_test_split_indices
#
get_train_test_split_indices(fold: int = 0, repeat: int = 0, sample: int = 0) -> tuple[ndarray, ndarray]
Get the indices of the train and test splits for a given task.
Source code in openml/tasks/task.py
open_in_browser
#
Opens the OpenML web page corresponding to this object in your default browser.
Source code in openml/base.py
publish
#
publish() -> OpenMLBase
Publish the object on the OpenML server.
Source code in openml/base.py
push_tag
#
remove_tag
#
url_for_id
classmethod
#
Return the OpenML URL for the object of the class entity with the given id.
TaskType
#
Bases: Enum
Possible task types as defined in OpenML.