Pytorch extension for OpenML python
Pytorch extension for openml-python API. This library provides a simple way to run your Pytorch models on OpenML tasks.
For a more native experience, PyTorch itself provides OpenML integrations for some tasks. You can find more information here.
Installation Instructions:
While this project does exist on pypi, while everything is being finalized, it is recommended to install the package directly from the repository.
| pip install git+https://github.com/openml/openml-pytorch -U
|
PyPi link https://pypi.org/project/openml-pytorch/
Set the API key for OpenML from the command line:
| openml configure apikey <your API key>
|
Usage
Load Data from OpenML and Train a Model
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 | # Import libraries
import openml
import torch
import numpy as np
from sklearn.model_selection import train_test_split
from typing import Any
from tqdm import tqdm
from openml_pytorch import GenericDataset
# Get dataset by ID and split into train and test
dataset = openml.datasets.get_dataset(20)
X, y, _, _ = dataset.get_data(target=dataset.default_target_attribute)
X = X.to_numpy(dtype=np.float32)
y = y.to_numpy(dtype=np.int64)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1, stratify=y)
# Dataloaders
ds_train = GenericDataset(X_train, y_train)
ds_test = GenericDataset(X_test, y_test)
dataloader_train = torch.utils.data.DataLoader(ds_train, batch_size=64, shuffle=True)
dataloader_test = torch.utils.data.DataLoader(ds_test, batch_size=64, shuffle=False)
# Model Definition
class TabularClassificationModel(torch.nn.Module):
def __init__(self, input_size, output_size):
super(TabularClassificationModel, self).__init__()
self.fc1 = torch.nn.Linear(input_size, 128)
self.fc2 = torch.nn.Linear(128, 64)
self.fc3 = torch.nn.Linear(64, output_size)
self.relu = torch.nn.ReLU()
self.softmax = torch.nn.Softmax(dim=1)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
x = self.softmax(x)
return x
# Train the model. Feel free to replace this with your own training pipeline.
trainer = BasicTrainer(
model = TabularClassificationModel(X_train.shape[1], len(np.unique(y_train))),
loss_fn = torch.nn.CrossEntropyLoss(),
opt = torch.optim.Adam,
dataloader_train = dataloader_train,
dataloader_test = dataloader_test,
device= torch.device("mps")
)
trainer.fit(10)
|
More Complex Image Classification Example
Import openML libraries
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95 | # openml imports
import openml
import openml_pytorch as op
from openml_pytorch.callbacks import TestCallback
from openml_pytorch.metrics import accuracy
from openml_pytorch.trainer import convert_to_rgb
# pytorch imports
from torch.utils.tensorboard.writer import SummaryWriter
from torchvision.transforms import Compose, Resize, ToPILImage, ToTensor, Lambda
import torchvision
# other imports
import logging
import warnings
# set up logging
openml.config.logger.setLevel(logging.DEBUG)
op.config.logger.setLevel(logging.DEBUG)
warnings.simplefilter(action='ignore')
## Data
### Define image transformations
transform = Compose(
[
ToPILImage(), # Convert tensor to PIL Image to ensure PIL Image operations can be applied.
Lambda(convert_to_rgb), # Convert PIL Image to RGB if it's not already.
Resize((64, 64)), # Resize the image.
ToTensor(), # Convert the PIL Image back to a tensor.
]
)
### Configure the Data Module and Choose a Task
"""
- Make sure the data is present in the `file_dir` directory, and the `filename_col` is correctly set along with this column correctly pointing to where your data is stored.
"""
data_module = op.OpenMLDataModule(
type_of_data="image",
file_dir="datasets",
filename_col="image_path",
target_mode="categorical",
target_column="label",
batch_size=64,
transform=transform,
)
# Download the OpenML task for tiniest imagenet
task = openml.tasks.get_task(363295)
## Model
model = torchvision.models.resnet18(num_classes=200)
## Train your model on the data
#- Note that by default, OpenML runs a 10 fold cross validation on the data. You cannot change this for now.
import torch
trainer = op.OpenMLTrainerModule(
experiment_name= "Tiny ImageNet",
data_module=data_module,
verbose=True,
epoch_count=2,
metrics= [accuracy],
# remove the TestCallback when you are done testing your pipeline. Having it here will make the pipeline run for a very short time.
callbacks=[
# TestCallback,
],
opt = torch.optim.Adam,
)
op.config.trainer = trainer
run = openml.runs.run_model_on_task(model, task, avoid_duplicate_runs=False)
## View information about your run
### Learning rate and loss plot
trainer.plot_loss()
trainer.plot_lr()
trainer.plot_all_metrics()
### Class labels
trainer.model_classes
## Model Vizualization
#- Sometimes you may want to visualize the model. You can either use netron or tensorboard for this purpose.
### Netron
trainer.export_to_netron()
### Tensorboard
"""
- By default, openml will log the tensorboard logs in the `tensorboard_logs` directory. You can view the logs by running `tensorboard --logdir tensorboard_logs` in the terminal.
"""
## Publish your model to OpenML
"""
- This is Optional, but publishing your model to OpenML will allow you to track your experiments and compare them with others.
- Make sure to set your apikey first.
- You can find your apikey on your OpenML account page.
"""
trainer.plot_all_metrics()
openml.config.apikey = ''
run = op.add_experiment_info_to_run(run=run, trainer=trainer)
run.publish()
|