Skip to content

OpenML Connection

This module defines the Pytorch extension for OpenML-python.

PytorchExtension

Bases: Extension

Connect Pytorch to OpenML-Python.

Source code in openml_pytorch/extension.py
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
class PytorchExtension(Extension):
    """Connect Pytorch to OpenML-Python."""

    ################################################################################################
    # General setup

    @classmethod
    def can_handle_flow(cls, flow: 'OpenMLFlow') -> bool:
        """Check whether a given describes a Pytorch estimator.

        This is done by parsing the ``external_version`` field.

        Parameters
        ----------
        flow : OpenMLFlow

        Returns
        -------
        bool
        """
        return cls._is_pytorch_flow(flow)

    @classmethod
    def can_handle_model(cls, model: Any) -> bool:
        """Check whether a model is an instance of ``torch.nn.Module``.

        Parameters
        ----------
        model : Any

        Returns
        -------
        bool
        """
        from torch.nn import Module
        return isinstance(model, Module)

    ################################################################################################
    # Method for dataloader 



    ################################################################################################
    # Methods for flow serialization and de-serialization

    def flow_to_model(self, flow: 'OpenMLFlow', initialize_with_defaults: bool = False) -> Any:
        """Initializes a Pytorch model based on a flow.

        Parameters
        ----------
        flow : mixed
            the object to deserialize (can be flow object, or any serialized
            parameter value that is accepted by)

        initialize_with_defaults : bool, optional (default=False)
            If this flag is set, the hyperparameter values of flows will be
            ignored and a flow with its defaults is returned.

        Returns
        -------
        mixed
        """
        return self._deserialize_pytorch(flow, initialize_with_defaults=initialize_with_defaults)

    def _deserialize_pytorch(
        self,
        o: Any,
        components: Optional[Dict] = None,
        initialize_with_defaults: bool = False,
        recursion_depth: int = 0,
    ) -> Any:
        """Recursive function to deserialize a Pytorch flow.

        This function delegates all work to the respective functions to deserialize special data
        structures etc.

        Parameters
        ----------
        o : mixed
            the object to deserialize (can be flow object, or any serialized
            parameter value that is accepted by)

        components : dict


        initialize_with_defaults : bool, optional (default=False)
            If this flag is set, the hyperparameter values of flows will be
            ignored and a flow with its defaults is returned.

        recursion_depth : int
            The depth at which this flow is called, mostly for debugging
            purposes

        Returns
        -------
        mixed
        """

        logging.info('-%s flow_to_pytorch START o=%s, components=%s, '
                     'init_defaults=%s' % ('-' * recursion_depth, o, components,
                                           initialize_with_defaults))
        depth_pp = recursion_depth + 1  # shortcut var, depth plus plus

        # First, we need to check whether the presented object is a json string.
        # JSON strings are used to encoder parameter values. By passing around
        # json strings for parameters, we make sure that we can flow_to_pytorch
        # the parameter values to the correct type.

        if isinstance(o, str):
            try:
                o = json.loads(o)
            except JSONDecodeError:
                pass

        if isinstance(o, dict):
            # Check if the dict encodes a 'special' object, which could not
            # easily converted into a string, but rather the information to
            # re-create the object were stored in a dictionary.
            if 'oml-python:serialized_object' in o:
                serialized_type = o['oml-python:serialized_object']
                value = o['value']
                if serialized_type == 'type':
                    rval = self._deserialize_type(value)
                elif serialized_type == 'function':
                    rval = self._deserialize_function(value)
                elif serialized_type == 'methoddescriptor':
                    rval = self._deserialize_methoddescriptor(value)
                elif serialized_type == 'component_reference':
                    assert components is not None  # Necessary for mypy
                    value = self._deserialize_pytorch(value, recursion_depth=depth_pp)
                    step_name = value['step_name']
                    key = value['key']
                    if key not in components:
                        key = str(key)
                    component = self._deserialize_pytorch(
                        components[key],
                        initialize_with_defaults=initialize_with_defaults,
                        recursion_depth=depth_pp
                    )
                    # The component is now added to where it should be used
                    # later. It should not be passed to the constructor of the
                    # main flow object.
                    del components[key]
                    if step_name is None:
                        rval = component
                    elif 'argument_1' not in value:
                        rval = (step_name, component)
                    else:
                        rval = (step_name, component, value['argument_1'])
                else:
                    raise ValueError('Cannot flow_to_pytorch %s' % serialized_type)

            else:
                rval = OrderedDict(
                    (
                        self._deserialize_pytorch(
                            o=key,
                            components=components,
                            initialize_with_defaults=initialize_with_defaults,
                            recursion_depth=depth_pp,
                        ),
                        self._deserialize_pytorch(
                            o=value,
                            components=components,
                            initialize_with_defaults=initialize_with_defaults,
                            recursion_depth=depth_pp,
                        )
                    )
                    for key, value in sorted(o.items())
                )
        elif isinstance(o, (list, tuple)):
            rval = [
                self._deserialize_pytorch(
                    o=element,
                    components=components,
                    initialize_with_defaults=initialize_with_defaults,
                    recursion_depth=depth_pp,
                )
                for element in o
            ]
            if isinstance(o, tuple):
                rval = tuple(rval)
        elif isinstance(o, (bool, int, float, str)) or o is None:
            rval = o
        elif isinstance(o, OpenMLFlow):
            if not self._is_pytorch_flow(o):
                raise ValueError('Only pytorch flows can be reinstantiated')
            rval = self._deserialize_model(
                flow=o,
                keep_defaults=initialize_with_defaults,
                recursion_depth=recursion_depth,
            )
        else:
            raise TypeError(o)
        logging.info('-%s flow_to_pytorch END   o=%s, rval=%s'
                     % ('-' * recursion_depth, o, rval))
        return rval

    def model_to_flow(self, model: Any, custom_name: Optional[str] = None) -> 'OpenMLFlow':
        """Transform a Pytorch model to a flow for uploading it to OpenML.

        Parameters
        ----------
        model : Any

        Returns
        -------
        OpenMLFlow
        """
        # Necessary to make pypy not complain about all the different possible return types
        return self._serialize_pytorch(model, custom_name)

    def _serialize_pytorch(self, o: Any, parent_model: Optional[Any] = None, custom_name: Optional[str] = None) -> Any:
        rval = None  # type: Any
        if self.is_estimator(o):
            # is the main model or a submodel
            rval = self._serialize_model(o, custom_name)
        elif isinstance(o, (list, tuple)):
            rval = [self._serialize_pytorch(element, parent_model) for element in o]
            if isinstance(o, tuple):
                rval = tuple(rval)
        elif isinstance(o, SIMPLE_TYPES) or o is None:
            if isinstance(o, tuple(SIMPLE_NUMPY_TYPES)):
                o = o.item()
            # base parameter values
            rval = o
        elif isinstance(o, dict):
            if not isinstance(o, OrderedDict):
                o = OrderedDict([(key, value) for key, value in sorted(o.items())])

            rval = OrderedDict()
            for key, value in o.items():
                if not isinstance(key, str):
                    raise TypeError('Can only use string as keys, you passed '
                                    'type %s for value %s.' %
                                    (type(key), str(key)))
                key = self._serialize_pytorch(key, parent_model)
                value = self._serialize_pytorch(value, parent_model)
                rval[key] = value
            rval = rval
        elif isinstance(o, type):
            rval = self._serialize_type(o)
        # This only works for user-defined functions (and not even partial).
        # I think this is exactly what we want here as there shouldn't be any
        # built-in or functool.partials in a pipeline
        elif inspect.isfunction(o):
            rval = self._serialize_function(o)
        elif inspect.ismethoddescriptor(o):
            rval = self._serialize_methoddescriptor(o)
        else:
            raise TypeError(o, type(o))
        return rval

    def get_version_information(self) -> List[str]:
        """List versions of libraries required by the flow.

        Libraries listed are ``Python``, ``pytorch``, ``numpy`` and ``scipy``.

        Returns
        -------
        List
        """

        # This can possibly be done by a package such as pyxb, but I could not get
        # it to work properly.
        import scipy
        import numpy

        major, minor, micro, _, _ = sys.version_info
        python_version = 'Python_{}.'.format(
            ".".join([str(major), str(minor), str(micro)]))
        pytorch_version = 'Torch_{}.'.format(torch.__version__)
        numpy_version = 'NumPy_{}.'.format(numpy.__version__)
        scipy_version = 'SciPy_{}.'.format(scipy.__version__)
        pytorch_version_formatted = pytorch_version.replace('+','_')
        return [python_version, pytorch_version_formatted, numpy_version, scipy_version]

    def create_setup_string(self, model: Any) -> str:
        """Create a string which can be used to reinstantiate the given model.

        Parameters
        ----------
        model : Any

        Returns
        -------
        str
        """
        run_environment = " ".join(self.get_version_information())
        return run_environment + " " + str(model)

    @classmethod
    def _is_pytorch_flow(cls, flow: OpenMLFlow) -> bool:
        return (
            flow.external_version.startswith('torch==')
            or ',torch==' in flow.external_version
        )

    def _serialize_model(self, model: Any, custom_name: Optional[str] = None) -> OpenMLFlow:
        """Create an OpenMLFlow.

        Calls `pytorch_to_flow` recursively to properly serialize the
        parameters to strings and the components (other models) to OpenMLFlows.

        Parameters
        ----------
        model : pytorch estimator

        Returns
        -------
        OpenMLFlow

        """

        # Get all necessary information about the model objects itself
        parameters, parameters_meta_info, subcomponents, subcomponents_explicit = \
            self._extract_information_from_model(model)

        # Check that a component does not occur multiple times in a flow as this
        # is not supported by OpenML
        self._check_multiple_occurence_of_component_in_flow(model, subcomponents)

        import zlib
        import os

        # class_name = model.__module__ + "." + model.__class__.__name__
        class_name = 'torch.nn' + "." + model.__class__.__name__
        class_name += '.'
        class_name += format(zlib.crc32(bytearray(os.urandom(32))), 'x')
        class_name += format(zlib.crc32(bytearray(os.urandom(32))), 'x')

        name = class_name

        # Get the external versions of all sub-components
        external_version = self._get_external_version_string(model, subcomponents)

        dependencies = '\n'.join([
            self._format_external_version(
                'torch',
                torch.__version__,
            ),
            'numpy>=1.6.1',
            'scipy>=0.9',
        ])

        torch_version = self._format_external_version('torch', torch.__version__)
        torch_version_formatted = torch_version.replace('==', '_')
        torch_version_formatted = torch_version_formatted.replace('+', '_')

        flow = OpenMLFlow(name=name,
                          class_name=class_name,
                          description='Automatically created pytorch flow.',
                          model=model,
                          components=subcomponents,
                          parameters=parameters,
                          parameters_meta_info=parameters_meta_info,
                          external_version=external_version,
                          tags=['openml-python', 'pytorch',
                                'python', torch_version_formatted],
                          language='English',
                          dependencies=dependencies, 
                          custom_name=custom_name)

        return flow

    def _get_external_version_string(
        self,
        model: Any,
        sub_components: Dict[str, OpenMLFlow],
    ) -> str:
        # Create external version string for a flow, given the model and the
        # already parsed dictionary of sub_components. Retrieves the external
        # version of all subcomponents, which themselves already contain all
        # requirements for their subcomponents. The external version string is a
        # sorted concatenation of all modules which are present in this run.
        model_package_name = model.__module__.split('.')[0]
        module = importlib.import_module(model_package_name)
        model_package_version_number = 'module.__version__'  # type: ignore
        external_version = self._format_external_version(
            model_package_name, model_package_version_number,
        )
        openml_version = self._format_external_version('openml', openml.__version__)
        torch_version = self._format_external_version('torch', torch.__version__)
        external_versions = set()
        external_versions.add(external_version)
        external_versions.add(openml_version)
        external_versions.add(torch_version)
        for visitee in sub_components.values():
            for external_version in visitee.external_version.split(','):
                external_versions.add(external_version)
        return ','.join(list(sorted(external_versions)))

    def _check_multiple_occurence_of_component_in_flow(
        self,
        model: Any,
        sub_components: Dict[str, OpenMLFlow],
    ) -> None:
        to_visit_stack = []  # type: List[OpenMLFlow]
        to_visit_stack.extend(sub_components.values())
        known_sub_components = set()  # type: Set[str]
        while len(to_visit_stack) > 0:
            visitee = to_visit_stack.pop()
            if visitee.name in known_sub_components:
                raise ValueError('Found a second occurence of component %s when '
                                 'trying to serialize %s.' % (visitee.name, model))
            else:
                known_sub_components.add(visitee.name)
                to_visit_stack.extend(visitee.components.values())

    def _is_container_module(self, module: torch.nn.Module) -> bool:
        if isinstance(module,
                      (torch.nn.Sequential,
                       torch.nn.ModuleDict,
                       torch.nn.ModuleList)):
            return True
        if module in (torch.nn.modules.container.Sequential,
                      torch.nn.modules.container.ModuleDict,
                      torch.nn.modules.container.ModuleList):
            return True
        return False

    def _get_module_hyperparameters(self, module: torch.nn.Module,
                                    parameters: Dict[str, torch.nn.Parameter]) -> Dict[str, Any]:
        # Extract the signature of the module constructor
        main_signature = inspect.signature(module.__init__)
        params = dict()  # type: Dict[str, Any]

        check_bases = False  # type: bool
        for param_name, param in main_signature.parameters.items():
            # Skip hyper-parameters which are actually parameters.
            if param_name in parameters.keys():
                continue

            # Skip *args and **kwargs, and check the base classes instead.
            if param.kind in (inspect.Parameter.VAR_POSITIONAL,
                              inspect.Parameter.VAR_KEYWORD):
                check_bases = True
                continue

            # Extract the hyperparameter from the module.
            if hasattr(module, param_name):
                params[param_name] = getattr(module, param_name)

        if check_bases:
            for base in module.__class__.__bases__:
                # Extract the signature  of the base constructor
                base_signature = inspect.signature(base.__init__)

                for param_name, param in base_signature.parameters.items():
                    # Skip hyper-parameters which are actually parameters.
                    if param_name in parameters.keys():
                        continue

                    # Skip *args and **kwargs since they are not relevant.
                    if param.kind in (inspect.Parameter.VAR_POSITIONAL,
                                      inspect.Parameter.VAR_KEYWORD):
                        continue

                    # Extract the hyperparameter from the module.
                    if hasattr(module, param_name):
                        params[param_name] = getattr(module, param_name)

        from .layers import Functional
        if isinstance(module, Functional):
            params['args'] = getattr(module, 'args')
            params['kwargs'] = getattr(module, 'kwargs')

        return params

    def _get_module_descriptors(self, model: torch.nn.Module, deep=True) -> Dict[str, Any]:
        # The named children (modules) of the given module.
        named_children = list((k, v) for (k, v) in model.named_children())
        # The parameters of the given module and its submodules.
        model_parameters = dict((k, v) for (k, v) in model.named_parameters())

        parameters = dict()  # type: Dict[str, Any]

        if not self._is_container_module(model):
            # For non-containers, we simply extract the hyperparameters.
            parameters = self._get_module_hyperparameters(model, model_parameters)
        else:
            # Otherwise we serialize their children as lists of pairs in order
            # to maintain the order of the sub modules.
            parameters['children'] = named_children

        # If a deep description is required, append the children to the dictionary of
        # returned parameters.
        if deep:
            named_children_dict = dict(named_children)
            parameters = {**parameters, **named_children_dict}

        return parameters

    def _extract_information_from_model(
        self,
        model: Any,
    ) -> Tuple[
        'OrderedDict[str, Optional[str]]',
        'OrderedDict[str, Optional[Dict]]',
        'OrderedDict[str, OpenMLFlow]',
        Set,
    ]:
        # This function contains four "global" states and is quite long and
        # complicated. If it gets to complicated to ensure it's correctness,
        # it would be best to make it a class with the four "global" states being
        # the class attributes and the if/elif/else in the for-loop calls to
        # separate class methods

        # stores all entities that should become subcomponents
        sub_components = OrderedDict()  # type: OrderedDict[str, OpenMLFlow]
        # stores the keys of all subcomponents that should become
        sub_components_explicit = set()
        parameters = OrderedDict()  # type: OrderedDict[str, Optional[str]]
        parameters_meta_info = OrderedDict()  # type: OrderedDict[str, Optional[Dict]]

        model_parameters = self._get_module_descriptors(model, deep=True)
        for k, v in sorted(model_parameters.items(), key=lambda t: t[0]):
            rval = self._serialize_pytorch(v, model)

            def flatten_all(list_):
                """ Flattens arbitrary depth lists of lists (e.g. [[1,2],[3,[1]]] -> [1,2,3,1]). """
                for el in list_:
                    if isinstance(el, (list, tuple)):
                        yield from flatten_all(el)
                    else:
                        yield el

            is_non_empty_list_of_lists_with_same_type = (
                isinstance(rval, (list, tuple))
                and len(rval) > 0
                and isinstance(rval[0], (list, tuple))
                and all([isinstance(rval_i, type(rval[0])) for rval_i in rval])
            )

            # Check that all list elements are of simple types.
            nested_list_of_simple_types = (
                is_non_empty_list_of_lists_with_same_type
                and all([isinstance(el, SIMPLE_TYPES) for el in flatten_all(rval)])
            )

            if is_non_empty_list_of_lists_with_same_type and not nested_list_of_simple_types:
                # If a list of lists is identified that include 'non-simple' types (e.g. objects),
                # we assume they are steps in a pipeline, feature union, or base classifiers in
                # a voting classifier.
                parameter_value = list()  # type: List
                reserved_keywords = set(self._get_module_descriptors(model, deep=False).keys())

                for sub_component_tuple in rval:
                    identifier = sub_component_tuple[0]
                    sub_component = sub_component_tuple[1]
                    sub_component_type = type(sub_component_tuple)
                    if not 2 <= len(sub_component_tuple) <= 3:
                        msg = 'Length of tuple does not match assumptions'
                        raise ValueError(msg)
                    if not isinstance(sub_component, (OpenMLFlow, type(None))):
                        msg = 'Second item of tuple does not match assumptions. ' \
                              'Expected OpenMLFlow, got %s' % type(sub_component)
                        raise TypeError(msg)

                    if identifier in reserved_keywords:
                        parent_model = "{}.{}".format(model.__module__,
                                                      model.__class__.__name__)
                        msg = 'Found element shadowing official ' \
                              'parameter for %s: %s' % (parent_model,
                                                        identifier)
                        raise PyOpenMLError(msg)

                    if sub_component is None:
                        # In a FeatureUnion it is legal to have a None step

                        pv = [identifier, None]
                        if sub_component_type is tuple:
                            parameter_value.append(tuple(pv))
                        else:
                            parameter_value.append(pv)

                    else:
                        # Add the component to the list of components, add a
                        # component reference as a placeholder to the list of
                        # parameters, which will be replaced by the real component
                        # when deserializing the parameter
                        sub_components_explicit.add(identifier)
                        sub_components[identifier] = sub_component
                        component_reference = OrderedDict()  # type: Dict[str, Union[str, Dict]]
                        component_reference['oml-python:serialized_object'] = 'component_reference'
                        cr_value = OrderedDict()  # type: Dict[str, Any]
                        cr_value['key'] = identifier
                        cr_value['step_name'] = identifier
                        if len(sub_component_tuple) == 3:
                            cr_value['argument_1'] = sub_component_tuple[2]
                        component_reference['value'] = cr_value
                        parameter_value.append(component_reference)

                # Here (and in the elif and else branch below) are the only
                # places where we encode a value as json to make sure that all
                # parameter values still have the same type after
                # deserialization

                if isinstance(rval, tuple):
                    parameter_json = json.dumps(tuple(parameter_value))
                else:
                    parameter_json = json.dumps(parameter_value)
                parameters[k] = parameter_json

            elif isinstance(rval, OpenMLFlow):

                # A subcomponent, for example the layers in a sequential model
                sub_components[k] = rval
                sub_components_explicit.add(k)
                component_reference = OrderedDict()
                component_reference['oml-python:serialized_object'] = 'component_reference'
                cr_value = OrderedDict()
                cr_value['key'] = k
                cr_value['step_name'] = None
                component_reference['value'] = cr_value
                cr = self._serialize_pytorch(component_reference, model)
                parameters[k] = json.dumps(cr)

            else:
                # a regular hyperparameter
                rval = json.dumps(rval)
                parameters[k] = rval

            parameters_meta_info[k] = OrderedDict((('description', None), ('data_type', None)))

        return parameters, parameters_meta_info, sub_components, sub_components_explicit

    def _get_fn_arguments_with_defaults(self, fn_name: Callable) -> Tuple[Dict, Set]:
        """
        Returns:
            i) a dict with all parameter names that have a default value, and
            ii) a set with all parameter names that do not have a default

        Parameters
        ----------
        fn_name : callable
            The function of which we want to obtain the defaults

        Returns
        -------
        params_with_defaults: dict
            a dict mapping parameter name to the default value
        params_without_defaults: set
            a set with all parameters that do not have a default value
        """
        # parameters with defaults are optional, all others are required.
        signature = inspect.getfullargspec(fn_name)
        if signature.defaults:
            optional_params = dict(zip(reversed(signature.args), reversed(signature.defaults)))
        else:
            optional_params = dict()
        required_params = {arg for arg in signature.args if arg not in optional_params}
        return optional_params, required_params

    def _deserialize_model(
        self,
        flow: OpenMLFlow,
        keep_defaults: bool,
        recursion_depth: int,
    ) -> Any:
        logging.info('-%s deserialize %s' % ('-' * recursion_depth, flow.name))
        model_name = flow.class_name
        self._check_dependencies(flow.dependencies)

        parameters = flow.parameters
        components = flow.components
        parameter_dict = OrderedDict()  # type: Dict[str, Any]

        # Do a shallow copy of the components dictionary so we can remove the
        # components from this copy once we added them into the pipeline. This
        # allows us to not consider them any more when looping over the
        # components, but keeping the dictionary of components untouched in the
        # original components dictionary.
        components_ = copy.copy(components)

        for name in parameters:
            value = parameters.get(name)
            logging.info('--%s flow_parameter=%s, value=%s' %
                         ('-' * recursion_depth, name, value))
            rval = self._deserialize_pytorch(
                value,
                components=components_,
                initialize_with_defaults=keep_defaults,
                recursion_depth=recursion_depth + 1,
            )
            parameter_dict[name] = rval

        for name in components:
            if name in parameter_dict:
                continue
            if name not in components_:
                continue
            value = components[name]
            logging.info('--%s flow_component=%s, value=%s'
                         % ('-' * recursion_depth, name, value))
            rval = self._deserialize_pytorch(
                value,
                recursion_depth=recursion_depth + 1,
            )
            parameter_dict[name] = rval

        # Remove the unique identifier
        model_name = model_name.rsplit('.', 1)[0]

        module_name = model_name.rsplit('.', 1)
        model_class = getattr(importlib.import_module(module_name[0]),
                              module_name[1])

        if keep_defaults:
            # obtain all params with a default
            param_defaults, _ = \
                self._get_fn_arguments_with_defaults(model_class.__init__)

            # delete the params that have a default from the dict,
            # so they get initialized with their default value
            # except [...]
            for param in param_defaults:
                # [...] the ones that also have a key in the components dict.
                # As OpenML stores different flows for ensembles with different
                # (base-)components, in OpenML terms, these are not considered
                # hyperparameters but rather constants (i.e., changing them would
                # result in a different flow)
                if param not in components.keys() and param in parameter_dict:
                    del parameter_dict[param]

        if self._is_container_module(model_class):
            children = parameter_dict['children']
            children = list((str(k), v) for (k, v) in children)
            children = OrderedDict(children)
            return model_class(children)

        from .layers import Functional
        if model_class is Functional:
            return model_class(function=parameter_dict['function'],
                               *parameter_dict['args'],
                               **parameter_dict['kwargs'])

        return model_class(**parameter_dict)

    def _check_dependencies(self, dependencies: str) -> None:
        if not dependencies:
            return

        dependencies_list = dependencies.split('\n')
        for dependency_string in dependencies_list:
            match = DEPENDENCIES_PATTERN.match(dependency_string)
            if not match:
                raise ValueError('Cannot parse dependency %s' % dependency_string)

            dependency_name = match.group('name')
            operation = match.group('operation')
            version = match.group('version')

            module = importlib.import_module(dependency_name)
            required_version = LooseVersion(version)
            installed_version = LooseVersion(module.__version__)  # type: ignore

            if operation == '==':
                check = required_version == installed_version
            elif operation == '>':
                check = installed_version > required_version
            elif operation == '>=':
                check = (installed_version > required_version
                         or installed_version == required_version)
            else:
                raise NotImplementedError(
                    'operation \'%s\' is not supported' % operation)
            if not check:
                raise ValueError('Trying to deserialize a model with dependency '
                                 '%s not satisfied.' % dependency_string)

    def _serialize_type(self, o: Any) -> 'OrderedDict[str, str]':
        mapping = {float: 'float',
                   np.float: 'np.float',
                   np.float32: 'np.float32',
                   np.float64: 'np.float64',
                   int: 'int',
                   np.int: 'np.int',
                   np.int32: 'np.int32',
                   np.int64: 'np.int64'}
        ret = OrderedDict()  # type: 'OrderedDict[str, str]'
        ret['oml-python:serialized_object'] = 'type'
        ret['value'] = mapping[o]
        return ret

    def _deserialize_type(self, o: str) -> Any:
        mapping = {'float': float,
                   'np.float': np.float,
                   'np.float32': np.float32,
                   'np.float64': np.float64,
                   'int': int,
                   'np.int': np.int,
                   'np.int32': np.int32,
                   'np.int64': np.int64}
        return mapping[o]

    def _serialize_function(self, o: Callable) -> 'OrderedDict[str, str]':
        name = o.__module__ + '.' + o.__name__
        ret = OrderedDict()  # type: 'OrderedDict[str, str]'
        ret['oml-python:serialized_object'] = 'function'
        ret['value'] = name
        return ret

    def _deserialize_function(self, name: str) -> Callable:
        module_name = name.rsplit('.', 1)
        function_handle = getattr(importlib.import_module(module_name[0]), module_name[1])
        return function_handle

    def _serialize_methoddescriptor(self, o: Any) -> 'OrderedDict[str, str]':
        name = o.__objclass__.__module__ \
            + '.' + o.__objclass__.__name__ \
            + '.' + o.__name__
        ret = OrderedDict()  # type: 'OrderedDict[str, str]'
        ret['oml-python:serialized_object'] = 'methoddescriptor'
        ret['value'] = name
        return ret

    def _deserialize_methoddescriptor(self, name: str) -> Any:
        module_name = name.rsplit('.', 2)
        object_handle = getattr(importlib.import_module(module_name[0]), module_name[1])
        function_handle = getattr(object_handle, module_name[2])
        return function_handle

    def _format_external_version(
        self,
        model_package_name: str,
        model_package_version_number: str,
    ) -> str:
        return '%s==%s' % (model_package_name, model_package_version_number)

    @staticmethod
    def _get_parameter_values_recursive(param_grid: Union[Dict, List[Dict]],
                                        parameter_name: str) -> List[Any]:
        """
        Returns a list of values for a given hyperparameter, encountered
        recursively throughout the flow. (e.g., n_jobs can be defined
        for various flows)

        Parameters
        ----------
        param_grid: Union[Dict, List[Dict]]
            Dict mapping from hyperparameter list to value, to a list of
            such dicts

        parameter_name: str
            The hyperparameter that needs to be inspected

        Returns
        -------
        List
            A list of all values of hyperparameters with this name
        """
        if isinstance(param_grid, dict):
            result = list()
            for param, value in param_grid.items():
                if param.split('__')[-1] == parameter_name:
                    result.append(value)
            return result
        elif isinstance(param_grid, list):
            result = list()
            for sub_grid in param_grid:
                result.extend(PytorchExtension._get_parameter_values_recursive(sub_grid,
                                                                               parameter_name))
            return result
        else:
            raise ValueError('Param_grid should either be a dict or list of dicts')

    ################################################################################################
    # Methods for performing runs with extension modules

    def is_estimator(self, model: Any) -> bool:
        """Check whether the given model is a pytorch estimator.

        This function is only required for backwards compatibility and will be removed in the
        near future.

        Parameters
        ----------
        model : Any

        Returns
        -------
        bool
        """
        return isinstance(model, torch.nn.Module)

    def seed_model(self, model: Any, seed: Optional[int] = None) -> Any:
        """Set the random state of all the unseeded components of a model and return the seeded
        model.

        Required so that all seed information can be uploaded to OpenML for reproducible results.

        Models that are already seeded will maintain the seed. In this case,
        only integer seeds are allowed (An exception is raised when a RandomState was used as
        seed).

        Parameters
        ----------
        model : pytorch model
            The model to be seeded
        seed : int
            The seed to initialize the RandomState with. Unseeded subcomponents
            will be seeded with a random number from the RandomState.

        Returns
        -------
        Any
        """

        return model

    def _run_model_on_fold(
        self,
        model: Any,
        task: 'OpenMLTask',
        X_train: Union[np.ndarray, scipy.sparse.spmatrix, pd.DataFrame],
        rep_no: int,
        fold_no: int,
        y_train: Optional[np.ndarray] = None,
        X_test: Optional[Union[np.ndarray, scipy.sparse.spmatrix, pd.DataFrame]] = None,
    ) -> Tuple[
        np.ndarray,
        np.ndarray,
        'OrderedDict[str, float]',
        Optional[OpenMLRunTrace],
        Optional[Any]
    ]:
        """Run a model on a repeat,fold,subsample triplet of the task and return prediction
        information.

        Furthermore, it will measure run time measures in case multi-core behaviour allows this.
        * exact user cpu time will be measured if the number of cores is set (recursive throughout
        the model) exactly to 1
        * wall clock time will be measured if the number of cores is set (recursive throughout the
        model) to any given number (but not when it is set to -1)

        Returns the data that is necessary to construct the OpenML Run object. Is used by
        run_task_get_arff_content. Do not use this function unless you know what you are doing.

        Parameters
        ----------
        model : Any
            The UNTRAINED model to run. The model instance will be copied and not altered.
        task : OpenMLTask
            The task to run the model on.
        X_train : array-like
            Training data for the given repetition and fold.
        rep_no : int
            The repeat of the experiment (0-based; in case of 1 time CV, always 0)
        fold_no : int
            The fold nr of the experiment (0-based; in case of holdout, always 0)
        y_train : Optional[np.ndarray] (default=None)
            Target attributes for supervised tasks. In case of classification, these are integer
            indices to the potential classes specified by dataset.
        X_test : Optional, array-like (default=None)
            Test attributes to test for generalization in supervised tasks.

        Returns
        -------
        predictions : np.ndarray
            Model predictions.
        probabilities :  Optional, np.ndarray
            Predicted probabilities (only applicable for supervised classification tasks).
        user_defined_measures : OrderedDict[str, float]
            User defined measures that were generated on this fold
        trace : Optional, OpenMLRunTrace
            Hyperparameter optimization trace (only applicable for supervised tasks with
            hyperparameter optimization).
        additional_information: Optional, Any
            Additional information provided by the extension to be converted into additional files.
        """

        try:
            trainer:OpenMLTrainerModule = config.trainer
            trainer.logger = config.logger
        except AttributeError:
            raise ValueError('Trainer not set to config. Please use openml_pytorch.config.trainer = trainer to set the trainer.')
        return trainer.run_model_on_fold(model, task, X_train, rep_no, fold_no, y_train, X_test)


    def compile_additional_information(
            self,
            task: 'OpenMLTask',
            additional_information: List[Tuple[int, int, Any]]
    ) -> Dict[str, Tuple[str, str]]:
        """Compiles additional information provided by the extension during the runs into a final
        set of files.

        Parameters
        ----------
        task : OpenMLTask
            The task the model was run on.
        additional_information: List[Tuple[int, int, Any]]
            A list of (fold, repetition, additional information) tuples obtained during training.

        Returns
        -------
        files : Dict[str, Tuple[str, str]]
            A dictionary of files with their file name and contents.
        """
        return dict()

    def obtain_parameter_values(
        self,
        flow: 'OpenMLFlow',
        model: Any = None,
    ) -> List[Dict[str, Any]]:
        """Extracts all parameter settings required for the flow from the model.

        If no explicit model is provided, the parameters will be extracted from `flow.model`
        instead.

        Parameters
        ----------
        flow : OpenMLFlow
            OpenMLFlow object (containing flow ids, i.e., it has to be downloaded from the server)

        model: Any, optional (default=None)
            The model from which to obtain the parameter values. Must match the flow signature.
            If None, use the model specified in ``OpenMLFlow.model``.

        Returns
        -------
        list
            A list of dicts, where each dict has the following entries:
            - ``oml:name`` : str: The OpenML parameter name
            - ``oml:value`` : mixed: A representation of the parameter value
            - ``oml:component`` : int: flow id to which the parameter belongs
        """
        openml.flows.functions._check_flow_for_server_id(flow)

        def get_flow_dict(_flow):
            flow_map = {_flow.name: _flow.flow_id}
            for subflow in _flow.components:
                flow_map.update(get_flow_dict(_flow.components[subflow]))
            return flow_map

        def extract_parameters(_flow, _flow_dict, component_model,
                               _main_call=False, main_id=None):
            def is_subcomponent_specification(values):
                # checks whether the current value can be a specification of
                # subcomponents, as for example the value for steps parameter
                # (in Pipeline) or transformers parameter (in
                # ColumnTransformer). These are always lists/tuples of lists/
                # tuples, size bigger than 2 and an OpenMLFlow item involved.
                if not isinstance(values, (tuple, list)):
                    return False
                for item in values:
                    if not isinstance(item, (tuple, list)):
                        return False
                    if len(item) < 2:
                        return False
                    if not isinstance(item[1], openml.flows.OpenMLFlow):
                        return False
                return True

            # _flow is openml flow object, _param dict maps from flow name to flow
            # id for the main call, the param dict can be overridden (useful for
            # unit tests / sentinels) this way, for flows without subflows we do
            # not have to rely on _flow_dict
            exp_parameters = set(_flow.parameters)
            exp_components = set(_flow.components)
            model_parameters = set([mp for mp in self._get_module_descriptors(component_model)
                                    if '__' not in mp])
            if len((exp_parameters | exp_components) ^ model_parameters) != 0:
                flow_params = sorted(exp_parameters | exp_components)
                model_params = sorted(model_parameters)
                raise ValueError('Parameters of the model do not match the '
                                 'parameters expected by the '
                                 'flow:\nexpected flow parameters: '
                                 '%s\nmodel parameters: %s' % (flow_params,
                                                               model_params))

            _params = []
            for _param_name in _flow.parameters:
                _current = OrderedDict()
                _current['oml:name'] = _param_name

                current_param_values = self.model_to_flow(
                    self._get_module_descriptors(component_model)[_param_name])

                # Try to filter out components (a.k.a. subflows) which are
                # handled further down in the code (by recursively calling
                # this function)!
                if isinstance(current_param_values, openml.flows.OpenMLFlow):
                    continue

                if is_subcomponent_specification(current_param_values):
                    # complex parameter value, with subcomponents
                    parsed_values = list()
                    for subcomponent in current_param_values:
                        if len(subcomponent) < 2 or len(subcomponent) > 3:
                            raise ValueError('Component reference should be '
                                             'size {2,3}. ')

                        subcomponent_identifier = subcomponent[0]
                        subcomponent_flow = subcomponent[1]
                        if not isinstance(subcomponent_identifier, str):
                            raise TypeError('Subcomponent identifier should be '
                                            'string')
                        if not isinstance(subcomponent_flow,
                                          openml.flows.OpenMLFlow):
                            raise TypeError('Subcomponent flow should be string')

                        current = {
                            "oml-python:serialized_object": "component_reference",
                            "value": {
                                "key": subcomponent_identifier,
                                "step_name": subcomponent_identifier
                            }
                        }
                        if len(subcomponent) == 3:
                            if not isinstance(subcomponent[2], list):
                                raise TypeError('Subcomponent argument should be'
                                                'list')
                            current['value']['argument_1'] = subcomponent[2]
                        parsed_values.append(current)
                    parsed_values = json.dumps(parsed_values)
                else:
                    # vanilla parameter value
                    parsed_values = json.dumps(current_param_values)

                _current['oml:value'] = parsed_values
                if _main_call:
                    _current['oml:component'] = main_id
                else:
                    _current['oml:component'] = _flow_dict[_flow.name]
                _params.append(_current)

            for _identifier in _flow.components:
                subcomponent_model = self._get_module_descriptors(component_model)[_identifier]
                _params.extend(extract_parameters(_flow.components[_identifier],
                                                  _flow_dict, subcomponent_model))
            return _params

        flow_dict = get_flow_dict(flow)
        model = model if model is not None else flow.model
        parameters = extract_parameters(flow, flow_dict, model, True, flow.flow_id)

        return parameters

    def _openml_param_name_to_pytorch(
        self,
        openml_parameter: openml.setups.OpenMLParameter,
        flow: OpenMLFlow,
    ) -> str:
        """
        Converts the name of an OpenMLParameter into the pytorch name, given a flow.

        Parameters
        ----------
        openml_parameter: OpenMLParameter
            The parameter under consideration

        flow: OpenMLFlow
            The flow that provides context.

        Returns
        -------
        pytorch_parameter_name: str
            The name the parameter will have once used in pytorch
        """
        if not isinstance(openml_parameter, openml.setups.OpenMLParameter):
            raise ValueError('openml_parameter should be an instance of OpenMLParameter')
        if not isinstance(flow, OpenMLFlow):
            raise ValueError('flow should be an instance of OpenMLFlow')

        flow_structure = flow.get_structure('name')
        if openml_parameter.flow_name not in flow_structure:
            raise ValueError('Obtained OpenMLParameter and OpenMLFlow do not correspond. ')
        name = openml_parameter.flow_name  # for PEP8
        return '__'.join(flow_structure[name] + [openml_parameter.parameter_name])

    ################################################################################################
    # Methods for hyperparameter optimization

    def instantiate_model_from_hpo_class(
        self,
        model: Any,
        trace_iteration: OpenMLTraceIteration,
    ) -> Any:
        """Instantiate a ``base_estimator`` which can be searched over by the hyperparameter
        optimization model (UNUSED)

        Parameters
        ----------
        model : Any
            A hyperparameter optimization model which defines the model to be instantiated.
        trace_iteration : OpenMLTraceIteration
            Describing the hyperparameter settings to instantiate.

        Returns
        -------
        Any
        """

        return model


    def check_if_model_fitted(self, model: Any) -> bool:
        """Returns True/False denoting if the model has already been fitted/trained
        Parameters
        ----------
        model : Any
        Returns
        -------
        bool
        """

can_handle_flow(flow) classmethod

Check whether a given describes a Pytorch estimator.

This is done by parsing the external_version field.

Parameters

flow : OpenMLFlow

Returns

bool

Source code in openml_pytorch/extension.py
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
@classmethod
def can_handle_flow(cls, flow: 'OpenMLFlow') -> bool:
    """Check whether a given describes a Pytorch estimator.

    This is done by parsing the ``external_version`` field.

    Parameters
    ----------
    flow : OpenMLFlow

    Returns
    -------
    bool
    """
    return cls._is_pytorch_flow(flow)

can_handle_model(model) classmethod

Check whether a model is an instance of torch.nn.Module.

Parameters

model : Any

Returns

bool

Source code in openml_pytorch/extension.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
@classmethod
def can_handle_model(cls, model: Any) -> bool:
    """Check whether a model is an instance of ``torch.nn.Module``.

    Parameters
    ----------
    model : Any

    Returns
    -------
    bool
    """
    from torch.nn import Module
    return isinstance(model, Module)

check_if_model_fitted(model)

Returns True/False denoting if the model has already been fitted/trained Parameters


model : Any Returns


bool

Source code in openml_pytorch/extension.py
1273
1274
1275
1276
1277
1278
1279
1280
1281
def check_if_model_fitted(self, model: Any) -> bool:
    """Returns True/False denoting if the model has already been fitted/trained
    Parameters
    ----------
    model : Any
    Returns
    -------
    bool
    """

compile_additional_information(task, additional_information)

Compiles additional information provided by the extension during the runs into a final set of files.

Parameters

task : OpenMLTask The task the model was run on. additional_information: List[Tuple[int, int, Any]] A list of (fold, repetition, additional information) tuples obtained during training.

Returns

files : Dict[str, Tuple[str, str]] A dictionary of files with their file name and contents.

Source code in openml_pytorch/extension.py
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
def compile_additional_information(
        self,
        task: 'OpenMLTask',
        additional_information: List[Tuple[int, int, Any]]
) -> Dict[str, Tuple[str, str]]:
    """Compiles additional information provided by the extension during the runs into a final
    set of files.

    Parameters
    ----------
    task : OpenMLTask
        The task the model was run on.
    additional_information: List[Tuple[int, int, Any]]
        A list of (fold, repetition, additional information) tuples obtained during training.

    Returns
    -------
    files : Dict[str, Tuple[str, str]]
        A dictionary of files with their file name and contents.
    """
    return dict()

create_setup_string(model)

Create a string which can be used to reinstantiate the given model.

Parameters

model : Any

Returns

str

Source code in openml_pytorch/extension.py
351
352
353
354
355
356
357
358
359
360
361
362
363
def create_setup_string(self, model: Any) -> str:
    """Create a string which can be used to reinstantiate the given model.

    Parameters
    ----------
    model : Any

    Returns
    -------
    str
    """
    run_environment = " ".join(self.get_version_information())
    return run_environment + " " + str(model)

flow_to_model(flow, initialize_with_defaults=False)

Initializes a Pytorch model based on a flow.

Parameters

flow : mixed the object to deserialize (can be flow object, or any serialized parameter value that is accepted by)

bool, optional (default=False)

If this flag is set, the hyperparameter values of flows will be ignored and a flow with its defaults is returned.

Returns

mixed

Source code in openml_pytorch/extension.py
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def flow_to_model(self, flow: 'OpenMLFlow', initialize_with_defaults: bool = False) -> Any:
    """Initializes a Pytorch model based on a flow.

    Parameters
    ----------
    flow : mixed
        the object to deserialize (can be flow object, or any serialized
        parameter value that is accepted by)

    initialize_with_defaults : bool, optional (default=False)
        If this flag is set, the hyperparameter values of flows will be
        ignored and a flow with its defaults is returned.

    Returns
    -------
    mixed
    """
    return self._deserialize_pytorch(flow, initialize_with_defaults=initialize_with_defaults)

get_version_information()

List versions of libraries required by the flow.

Libraries listed are Python, pytorch, numpy and scipy.

Returns

List

Source code in openml_pytorch/extension.py
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def get_version_information(self) -> List[str]:
    """List versions of libraries required by the flow.

    Libraries listed are ``Python``, ``pytorch``, ``numpy`` and ``scipy``.

    Returns
    -------
    List
    """

    # This can possibly be done by a package such as pyxb, but I could not get
    # it to work properly.
    import scipy
    import numpy

    major, minor, micro, _, _ = sys.version_info
    python_version = 'Python_{}.'.format(
        ".".join([str(major), str(minor), str(micro)]))
    pytorch_version = 'Torch_{}.'.format(torch.__version__)
    numpy_version = 'NumPy_{}.'.format(numpy.__version__)
    scipy_version = 'SciPy_{}.'.format(scipy.__version__)
    pytorch_version_formatted = pytorch_version.replace('+','_')
    return [python_version, pytorch_version_formatted, numpy_version, scipy_version]

instantiate_model_from_hpo_class(model, trace_iteration)

Instantiate a base_estimator which can be searched over by the hyperparameter optimization model (UNUSED)

Parameters

model : Any A hyperparameter optimization model which defines the model to be instantiated. trace_iteration : OpenMLTraceIteration Describing the hyperparameter settings to instantiate.

Returns

Any

Source code in openml_pytorch/extension.py
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
def instantiate_model_from_hpo_class(
    self,
    model: Any,
    trace_iteration: OpenMLTraceIteration,
) -> Any:
    """Instantiate a ``base_estimator`` which can be searched over by the hyperparameter
    optimization model (UNUSED)

    Parameters
    ----------
    model : Any
        A hyperparameter optimization model which defines the model to be instantiated.
    trace_iteration : OpenMLTraceIteration
        Describing the hyperparameter settings to instantiate.

    Returns
    -------
    Any
    """

    return model

is_estimator(model)

Check whether the given model is a pytorch estimator.

This function is only required for backwards compatibility and will be removed in the near future.

Parameters

model : Any

Returns

bool

Source code in openml_pytorch/extension.py
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
def is_estimator(self, model: Any) -> bool:
    """Check whether the given model is a pytorch estimator.

    This function is only required for backwards compatibility and will be removed in the
    near future.

    Parameters
    ----------
    model : Any

    Returns
    -------
    bool
    """
    return isinstance(model, torch.nn.Module)

model_to_flow(model, custom_name=None)

Transform a Pytorch model to a flow for uploading it to OpenML.

Parameters

model : Any

Returns

OpenMLFlow

Source code in openml_pytorch/extension.py
272
273
274
275
276
277
278
279
280
281
282
283
284
def model_to_flow(self, model: Any, custom_name: Optional[str] = None) -> 'OpenMLFlow':
    """Transform a Pytorch model to a flow for uploading it to OpenML.

    Parameters
    ----------
    model : Any

    Returns
    -------
    OpenMLFlow
    """
    # Necessary to make pypy not complain about all the different possible return types
    return self._serialize_pytorch(model, custom_name)

obtain_parameter_values(flow, model=None)

Extracts all parameter settings required for the flow from the model.

If no explicit model is provided, the parameters will be extracted from flow.model instead.

Parameters

flow : OpenMLFlow OpenMLFlow object (containing flow ids, i.e., it has to be downloaded from the server)

Any, optional (default=None)

The model from which to obtain the parameter values. Must match the flow signature. If None, use the model specified in OpenMLFlow.model.

Returns

list A list of dicts, where each dict has the following entries: - oml:name : str: The OpenML parameter name - oml:value : mixed: A representation of the parameter value - oml:component : int: flow id to which the parameter belongs

Source code in openml_pytorch/extension.py
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
def obtain_parameter_values(
    self,
    flow: 'OpenMLFlow',
    model: Any = None,
) -> List[Dict[str, Any]]:
    """Extracts all parameter settings required for the flow from the model.

    If no explicit model is provided, the parameters will be extracted from `flow.model`
    instead.

    Parameters
    ----------
    flow : OpenMLFlow
        OpenMLFlow object (containing flow ids, i.e., it has to be downloaded from the server)

    model: Any, optional (default=None)
        The model from which to obtain the parameter values. Must match the flow signature.
        If None, use the model specified in ``OpenMLFlow.model``.

    Returns
    -------
    list
        A list of dicts, where each dict has the following entries:
        - ``oml:name`` : str: The OpenML parameter name
        - ``oml:value`` : mixed: A representation of the parameter value
        - ``oml:component`` : int: flow id to which the parameter belongs
    """
    openml.flows.functions._check_flow_for_server_id(flow)

    def get_flow_dict(_flow):
        flow_map = {_flow.name: _flow.flow_id}
        for subflow in _flow.components:
            flow_map.update(get_flow_dict(_flow.components[subflow]))
        return flow_map

    def extract_parameters(_flow, _flow_dict, component_model,
                           _main_call=False, main_id=None):
        def is_subcomponent_specification(values):
            # checks whether the current value can be a specification of
            # subcomponents, as for example the value for steps parameter
            # (in Pipeline) or transformers parameter (in
            # ColumnTransformer). These are always lists/tuples of lists/
            # tuples, size bigger than 2 and an OpenMLFlow item involved.
            if not isinstance(values, (tuple, list)):
                return False
            for item in values:
                if not isinstance(item, (tuple, list)):
                    return False
                if len(item) < 2:
                    return False
                if not isinstance(item[1], openml.flows.OpenMLFlow):
                    return False
            return True

        # _flow is openml flow object, _param dict maps from flow name to flow
        # id for the main call, the param dict can be overridden (useful for
        # unit tests / sentinels) this way, for flows without subflows we do
        # not have to rely on _flow_dict
        exp_parameters = set(_flow.parameters)
        exp_components = set(_flow.components)
        model_parameters = set([mp for mp in self._get_module_descriptors(component_model)
                                if '__' not in mp])
        if len((exp_parameters | exp_components) ^ model_parameters) != 0:
            flow_params = sorted(exp_parameters | exp_components)
            model_params = sorted(model_parameters)
            raise ValueError('Parameters of the model do not match the '
                             'parameters expected by the '
                             'flow:\nexpected flow parameters: '
                             '%s\nmodel parameters: %s' % (flow_params,
                                                           model_params))

        _params = []
        for _param_name in _flow.parameters:
            _current = OrderedDict()
            _current['oml:name'] = _param_name

            current_param_values = self.model_to_flow(
                self._get_module_descriptors(component_model)[_param_name])

            # Try to filter out components (a.k.a. subflows) which are
            # handled further down in the code (by recursively calling
            # this function)!
            if isinstance(current_param_values, openml.flows.OpenMLFlow):
                continue

            if is_subcomponent_specification(current_param_values):
                # complex parameter value, with subcomponents
                parsed_values = list()
                for subcomponent in current_param_values:
                    if len(subcomponent) < 2 or len(subcomponent) > 3:
                        raise ValueError('Component reference should be '
                                         'size {2,3}. ')

                    subcomponent_identifier = subcomponent[0]
                    subcomponent_flow = subcomponent[1]
                    if not isinstance(subcomponent_identifier, str):
                        raise TypeError('Subcomponent identifier should be '
                                        'string')
                    if not isinstance(subcomponent_flow,
                                      openml.flows.OpenMLFlow):
                        raise TypeError('Subcomponent flow should be string')

                    current = {
                        "oml-python:serialized_object": "component_reference",
                        "value": {
                            "key": subcomponent_identifier,
                            "step_name": subcomponent_identifier
                        }
                    }
                    if len(subcomponent) == 3:
                        if not isinstance(subcomponent[2], list):
                            raise TypeError('Subcomponent argument should be'
                                            'list')
                        current['value']['argument_1'] = subcomponent[2]
                    parsed_values.append(current)
                parsed_values = json.dumps(parsed_values)
            else:
                # vanilla parameter value
                parsed_values = json.dumps(current_param_values)

            _current['oml:value'] = parsed_values
            if _main_call:
                _current['oml:component'] = main_id
            else:
                _current['oml:component'] = _flow_dict[_flow.name]
            _params.append(_current)

        for _identifier in _flow.components:
            subcomponent_model = self._get_module_descriptors(component_model)[_identifier]
            _params.extend(extract_parameters(_flow.components[_identifier],
                                              _flow_dict, subcomponent_model))
        return _params

    flow_dict = get_flow_dict(flow)
    model = model if model is not None else flow.model
    parameters = extract_parameters(flow, flow_dict, model, True, flow.flow_id)

    return parameters

seed_model(model, seed=None)

Set the random state of all the unseeded components of a model and return the seeded model.

Required so that all seed information can be uploaded to OpenML for reproducible results.

Models that are already seeded will maintain the seed. In this case, only integer seeds are allowed (An exception is raised when a RandomState was used as seed).

Parameters

model : pytorch model The model to be seeded seed : int The seed to initialize the RandomState with. Unseeded subcomponents will be seeded with a random number from the RandomState.

Returns

Any

Source code in openml_pytorch/extension.py
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
def seed_model(self, model: Any, seed: Optional[int] = None) -> Any:
    """Set the random state of all the unseeded components of a model and return the seeded
    model.

    Required so that all seed information can be uploaded to OpenML for reproducible results.

    Models that are already seeded will maintain the seed. In this case,
    only integer seeds are allowed (An exception is raised when a RandomState was used as
    seed).

    Parameters
    ----------
    model : pytorch model
        The model to be seeded
    seed : int
        The seed to initialize the RandomState with. Unseeded subcomponents
        will be seeded with a random number from the RandomState.

    Returns
    -------
    Any
    """

    return model