Skip to content

Trainer

This module provides classes and methods to facilitate the configuration, data handling, training, and evaluation of machine learning models using PyTorch and OpenML datasets. The functionalities include: - Generation of default configurations for models. - Handling of image and tabular data. - Training and evaluating machine learning models. - Exporting trained models to ONNX format. - Managing data transformations and loaders.

This module provides classes and methods to facilitate the configuration, data handling, training, and evaluation of machine learning models using PyTorch and OpenML datasets. The functionalities include: - Generation of default configurations for models. - Handling of image and tabular data. - Training and evaluating machine learning models. - Exporting trained models to ONNX format. - Managing data transformations and loaders.

BaseDataHandler

BaseDataHandler class is an abstract base class for data handling operations.

Source code in openml_pytorch/trainer.py
206
207
208
209
210
211
212
213
214
215
216
217
class BaseDataHandler:
    """
    BaseDataHandler class is an abstract base class for data handling operations.
    """

    def prepare_data(
        self, X_train, y_train, X_val, y_val, data_config: SimpleNamespace
    ):
        raise NotImplementedError

    def prepare_test_data(self, X_test, data_config: SimpleNamespace):
        raise NotImplementedError

BasicTrainer

BasicTrainer class provides a simple training loop for PyTorch models.You pass in the model, loss function, optimizer, data loaders, and device. The fit method trains the model for the specified number of epochs.

Source code in openml_pytorch/trainer.py
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
class BasicTrainer:
    """
    BasicTrainer class provides a simple training loop for PyTorch models.You pass in the model, loss function, optimizer, data loaders, and device. The fit method trains the model for the specified number of epochs.
    """

    def __init__(
        self,
        model: Any,
        loss_fn: Any,
        opt: Any,
        dataloader_train: torch.utils.data.DataLoader,
        dataloader_test: torch.utils.data.DataLoader,
        device: torch.device,
    ):
        self.device = device
        self.model = model.to(self.device)
        self.loss_fn = loss_fn
        self.opt = opt(self.model.parameters())
        self.dataloader_train = dataloader_train
        self.dataloader_test = dataloader_test
        self.losses = {"train": [], "test": []}

    def train_step(self, x, y):
        self.model.train()
        self.opt.zero_grad()
        yhat = self.model(x)
        loss = self.loss_fn(yhat, y)
        loss.backward()
        self.opt.step()
        return loss.item()

    def test_step(self, x, y):
        self.model.eval()
        with torch.no_grad():
            yhat = self.model(x)
            loss = self.loss_fn(yhat, y)
        return loss.item()

    def fit(self, epochs):
        if self.dataloader_train is None:
            raise ValueError("dataloader_train is not set")
        if self.dataloader_test is None:
            raise ValueError("dataloader_test is not set")
        bar = tqdm(range(epochs), desc="Epochs")
        for epoch in bar:
            # train
            for x, y in self.dataloader_train:
                x, y = x.to(self.device), y.to(self.device)
                loss = self.train_step(x, y)
                self.losses["train"].append(loss)
            # test
            test_loss = 0
            for x, y in self.dataloader_test:
                x, y = x.to(self.device), y.to(self.device)
                test_loss += self.test_step(x, y)
                self.losses["test"].append(test_loss)
            bar.set_postfix(
                {"Train loss": loss, "Test loss": test_loss, "Epoch": epoch + 1}
            )

DataContainer

class DataContainer

A class to contain the training, validation, and test data loaders. This just makes it easier to access them when required.

Attributes: train_dl: DataLoader object for the training data. valid_dl: DataLoader object for the validation data. test_dl: Optional DataLoader object for the test data.

Source code in openml_pytorch/trainer.py
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
class DataContainer:
    """
    class DataContainer:
        A class to contain the training, validation, and test data loaders. This just makes it easier to access them when required.

        Attributes:
        train_dl: DataLoader object for the training data.
        valid_dl: DataLoader object for the validation data.
        test_dl: Optional DataLoader object for the test data.
    """

    def __init__(
        self,
        train_dl: DataLoader,
        valid_dl: torch.utils.data.DataLoader,
        test_dl: torch.utils.data.DataLoader = None,
    ):  # type: ignore
        self.train_dl, self.valid_dl = train_dl, valid_dl
        self.test_dl = test_dl

    @property
    def train_ds(self):
        return self.train_dl.dataset

    @property
    def valid_ds(self):
        return self.valid_dl.dataset

    @property
    def test_ds(self):
        return self.test_dl.dataset

DefaultConfigGenerator

DefaultConfigGenerator class provides various methods to generate default configurations.

Source code in openml_pytorch/trainer.py
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
class DefaultConfigGenerator:
    """
    DefaultConfigGenerator class provides various methods to generate default configurations.
    """

    @staticmethod
    def _default_loss_fn_gen(task: OpenMLTask) -> torch.nn.Module:
        """
        _default_loss_fn_gen returns a loss fn based on the task type - regressions use
        torch.nn.SmoothL1Loss while classifications use torch.nn.CrossEntropyLoss
        """
        if isinstance(task, OpenMLRegressionTask):
            return torch.nn.SmoothL1Loss()
        elif isinstance(task, OpenMLClassificationTask):
            return torch.nn.CrossEntropyLoss()
        else:
            raise ValueError(task)

    @staticmethod
    def _default_predict(output: torch.Tensor, task: OpenMLTask) -> torch.Tensor:
        """
        _default_predict turns the outputs into predictions by returning the argmax of the output tensor for classification tasks, and by flattening the prediction in case of the regression
        """
        output_axis = output.dim() - 1
        if isinstance(task, OpenMLClassificationTask):
            output = torch.argmax(output, dim=output_axis)
        elif isinstance(task, OpenMLRegressionTask):
            output = output.view(-1)
        else:
            raise ValueError(task)
        return output

    @staticmethod
    def _default_predict_proba(output: torch.Tensor, task: OpenMLTask) -> torch.Tensor:
        """
        _default_predict_proba turns the outputs into probabilities using softmax
        """
        output_axis = output.dim() - 1
        output = output.softmax(dim=output_axis)
        return output

    @staticmethod
    def _default_sanitize(tensor: torch.Tensor) -> torch.Tensor:
        """
        _default sanitizer replaces NaNs with 1e-6
        """
        tensor = torch.where(
            torch.isnan(tensor), torch.ones_like(tensor) * torch.tensor(1e-6), tensor
        )
        return tensor

    @staticmethod
    def _default_retype_labels(tensor: torch.Tensor, task: OpenMLTask) -> torch.Tensor:
        """
        _default_retype_labels changes the type of the tensor to long for classification tasks and to float for regression tasks
        """
        if isinstance(task, OpenMLClassificationTask):
            return tensor.long()
        elif isinstance(task, OpenMLRegressionTask):
            return tensor.float()
        else:
            raise ValueError(task)

    def get_device(
        self,
    ):
        """
        Checks if a GPU is available and returns the device to be used for training (cuda, mps or cpu)
        """
        if torch.cuda.is_available():
            device = torch.device("cuda")
        elif torch.backends.mps.is_available() and torch.backends.mps.is_built():
            device = torch.device("mps")
        else:
            device = torch.device("cpu")

        return device

    def default_image_transform(self):
        return Compose(
            [
                ToPILImage(),  # Convert tensor to PIL Image to ensure PIL Image operations can be applied.
                Lambda(convert_to_rgb),  # Convert PIL Image to RGB if it's not already.
                Resize((128, 128)),  # Resize the image.
                ToTensor(),  # Convert the PIL Image back to a tensor.
            ]
        )

    def default_image_transform_test(self):
        return Compose(
            [
                ToPILImage(),  # Convert tensor to PIL Image to ensure PIL Image operations can be applied.
                Lambda(convert_to_rgb),  # Convert PIL Image to RGB if it's not already.
                Resize((128, 128)),  # Resize the image.
                ToTensor(),  # Convert the PIL Image back to a tensor.
            ]
        )

    def return_model_config(self):
        """
        Returns a configuration object for the model
        """

        return SimpleNamespace(
            device=self.get_device(),
            loss_fn=self._default_loss_fn_gen,
            # predict turns the outputs of the model into actual predictions
            predict=self._default_predict,  # type: Callable[[torch.Tensor, OpenMLTask], torch.Tensor]
            # predict_proba turns the outputs of the model into probabilities for each class
            predict_proba=self._default_predict_proba,  # type: Callable[[torch.Tensor], torch.Tensor]
            # epoch_count represents the number of epochs the model should be trained for
            epoch_count=3,  # type: int,
            verbose=True,
            schduler=None,
            opt_kwargs={},
            scheduler_kwargs={},
        )

    def return_data_config(self):
        """
        Returns a configuration object for the data
        """
        return SimpleNamespace(
            type_of_data="image",
            perform_validation=False,
            # progress_callback is called when a training step is finished, in order to report the current progress
            # sanitize sanitizes the input data in order to ensure that models can be trained safely
            sanitize=self._default_sanitize,  # type: Callable[[torch.Tensor], torch.Tensor]
            # retype_labels changes the types of the labels in order to ensure type compatibility
            retype_labels=(
                self._default_retype_labels
            ),  # type: Callable[[torch.Tensor, OpenMLTask], torch.Tensor]
            # image_size is the size of the images that are fed into the model
            image_size=128,
            # batch_size represents the processing batch size for training
            batch_size=64,  # type: int
            data_augmentation=None,
            validation_split=0.1,
            transform=self.default_image_transform(),
            transform_test=self.default_image_transform_test(),
        )

get_device()

Checks if a GPU is available and returns the device to be used for training (cuda, mps or cpu)

Source code in openml_pytorch/trainer.py
126
127
128
129
130
131
132
133
134
135
136
137
138
139
def get_device(
    self,
):
    """
    Checks if a GPU is available and returns the device to be used for training (cuda, mps or cpu)
    """
    if torch.cuda.is_available():
        device = torch.device("cuda")
    elif torch.backends.mps.is_available() and torch.backends.mps.is_built():
        device = torch.device("mps")
    else:
        device = torch.device("cpu")

    return device

return_data_config()

Returns a configuration object for the data

Source code in openml_pytorch/trainer.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def return_data_config(self):
    """
    Returns a configuration object for the data
    """
    return SimpleNamespace(
        type_of_data="image",
        perform_validation=False,
        # progress_callback is called when a training step is finished, in order to report the current progress
        # sanitize sanitizes the input data in order to ensure that models can be trained safely
        sanitize=self._default_sanitize,  # type: Callable[[torch.Tensor], torch.Tensor]
        # retype_labels changes the types of the labels in order to ensure type compatibility
        retype_labels=(
            self._default_retype_labels
        ),  # type: Callable[[torch.Tensor, OpenMLTask], torch.Tensor]
        # image_size is the size of the images that are fed into the model
        image_size=128,
        # batch_size represents the processing batch size for training
        batch_size=64,  # type: int
        data_augmentation=None,
        validation_split=0.1,
        transform=self.default_image_transform(),
        transform_test=self.default_image_transform_test(),
    )

return_model_config()

Returns a configuration object for the model

Source code in openml_pytorch/trainer.py
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def return_model_config(self):
    """
    Returns a configuration object for the model
    """

    return SimpleNamespace(
        device=self.get_device(),
        loss_fn=self._default_loss_fn_gen,
        # predict turns the outputs of the model into actual predictions
        predict=self._default_predict,  # type: Callable[[torch.Tensor, OpenMLTask], torch.Tensor]
        # predict_proba turns the outputs of the model into probabilities for each class
        predict_proba=self._default_predict_proba,  # type: Callable[[torch.Tensor], torch.Tensor]
        # epoch_count represents the number of epochs the model should be trained for
        epoch_count=3,  # type: int,
        verbose=True,
        schduler=None,
        opt_kwargs={},
        scheduler_kwargs={},
    )

Learner

A class to store the model, optimizer, loss_fn, and data loaders for training and evaluation.

Source code in openml_pytorch/trainer.py
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
class Learner:
    """
    A class to store the model, optimizer, loss_fn, and data loaders for training and evaluation.
    """

    def __init__(
        self, model, opt, loss_fn, scheduler, data, model_classes, device="cpu"
    ):
        (
            self.model,
            self.opt,
            self.loss_fn,
            self.scheduler,
            self.data,
            self.model_classes,
            self.device,
        ) = (model, opt, loss_fn, scheduler, data, model_classes, device)

OpenMLDataModule

Source code in openml_pytorch/trainer.py
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
class OpenMLDataModule:
    def __init__(
        self,
        type_of_data="image",
        filename_col="Filename",
        file_dir="images",
        target_mode="categorical",
        transform=None,
        transform_test=None,
        target_column="encoded_labels",
        **kwargs,
    ):
        self.config_gen = DefaultConfigGenerator()
        self.data_config = self.config_gen.return_data_config()
        self.data_config.type_of_data = type_of_data
        self.data_config.filename_col = filename_col
        self.data_config.file_dir = file_dir
        self.data_config.target_mode = target_mode
        self.data_config.target_column = target_column
        self.handler: BaseDataHandler | None = data_handlers.get(type_of_data)

        if transform is not None:
            self.data_config.transform = transform
        if transform_test is not None:
            self.data_config.transform_test = transform_test

        if not self.handler:
            raise ValueError(f"Data type {type_of_data} not supported.")

    def get_data(
        self,
        X_train: pd.DataFrame,
        y_train: Optional[pd.Series],
        X_test: pd.DataFrame,
        task,
    ):
        # Split the training data
        X_train_train, X_val, y_train_train, y_val = self.split_training_data(
            X_train, y_train
        )

        y_train_train, y_val, model_classes = self.encode_labels(y_train_train, y_val)

        # Use handler to prepare datasets
        train_loader, val_loader = self.prepare_datasets_for_training_and_validation(
            X_train_train, X_val, y_train_train, y_val
        )

        # Prepare test data
        test_loader = self.process_test_data(X_test)

        return DataContainer(train_loader, val_loader, test_loader), model_classes

    def process_test_data(self, X_test):
        test = self.handler.prepare_test_data(X_test, self.data_config)
        test_loader = DataLoader(
            test, batch_size=self.data_config.batch_size, shuffle=False
        )

        return test_loader

    def prepare_datasets_for_training_and_validation(
        self, X_train_train, X_val, y_train_train, y_val
    ):
        if self.handler is None:
            raise ValueError(
                f"Data type {self.data_config.type_of_data} not supported."
            )

        train, val = self.handler.prepare_data(
            X_train_train, y_train_train, X_val, y_val, self.data_config
        )

        train_loader = DataLoader(
            train, batch_size=self.data_config.batch_size, shuffle=True
        )
        val_loader = DataLoader(
            val, batch_size=self.data_config.batch_size, shuffle=False
        )

        return train_loader, val_loader

    def encode_labels(self, y_train_train, y_val):
        """
        Encode the labels for categorical data
        """
        if self.data_config.target_mode == "categorical":
            label_encoder = preprocessing.LabelEncoder().fit(y_train_train)
            y_train_train = pd.Series(label_encoder.transform(y_train_train))
            y_val = pd.Series(label_encoder.transform(y_val))
            # Determine model classes
            model_classes = (
                label_encoder.classes_
                if self.data_config.target_mode == "categorical"
                else None
            )

        return y_train_train, y_val, model_classes

    def split_training_data(self, X_train, y_train):
        if type(y_train) != pd.Series:
            y_train = pd.Series(y_train)

        X_train_train, X_val, y_train_train, y_val = train_test_split(
            X_train,
            y_train,
            test_size=self.data_config.validation_split,
            shuffle=True,
            stratify=y_train,
            random_state=0,
        )

        return X_train_train, X_val, y_train_train, y_val

encode_labels(y_train_train, y_val)

Encode the labels for categorical data

Source code in openml_pytorch/trainer.py
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
def encode_labels(self, y_train_train, y_val):
    """
    Encode the labels for categorical data
    """
    if self.data_config.target_mode == "categorical":
        label_encoder = preprocessing.LabelEncoder().fit(y_train_train)
        y_train_train = pd.Series(label_encoder.transform(y_train_train))
        y_val = pd.Series(label_encoder.transform(y_val))
        # Determine model classes
        model_classes = (
            label_encoder.classes_
            if self.data_config.target_mode == "categorical"
            else None
        )

    return y_train_train, y_val, model_classes

OpenMLImageHandler

Bases: BaseDataHandler

OpenMLImageHandler is a class that extends BaseDataHandler to handle image data from OpenML datasets.

Source code in openml_pytorch/trainer.py
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
class OpenMLImageHandler(BaseDataHandler):
    """
    OpenMLImageHandler is a class that extends BaseDataHandler to handle image data from OpenML datasets.
    """

    def prepare_data(self, X_train, y_train, X_val, y_val, data_config=None):
        train = OpenMLImageDataset(
            image_dir=data_config.file_dir,
            X=X_train,
            y=y_train,
            transform_x=data_config.transform,
            image_size=data_config.image_size,
        )
        val = OpenMLImageDataset(
            image_dir=data_config.file_dir,
            X=X_val,
            y=y_val,
            transform_x=data_config.transform_test,
            image_size=data_config.image_size,
        )
        return train, val

    def prepare_test_data(self, X_test, data_config=None):
        test = OpenMLImageDataset(
            image_dir=data_config.file_dir,
            X=X_test,
            y=None,
            transform_x=data_config.transform_test,
            image_size=data_config.image_size,
        )
        return test

OpenMLTabularHandler

Bases: BaseDataHandler

OpenMLTabularHandler is a class that extends BaseDataHandler to handle tabular data from OpenML datasets.

Source code in openml_pytorch/trainer.py
253
254
255
256
257
258
259
260
261
262
263
264
265
class OpenMLTabularHandler(BaseDataHandler):
    """
    OpenMLTabularHandler is a class that extends BaseDataHandler to handle tabular data from OpenML datasets.
    """

    def prepare_data(self, X_train, y_train, X_val, y_val, data_config=None):
        train = OpenMLTabularDataset(X=X_train, y=y_train)
        val = OpenMLTabularDataset(X=X_val, y=y_val)
        return train, val

    def prepare_test_data(self, X_test, data_config=None):
        test = OpenMLTabularDataset(X=X_test, y=None)
        return test

OpenMLTrainerModule

Source code in openml_pytorch/trainer.py
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
class OpenMLTrainerModule:
    def _default_progress_callback(
        self, fold: int, rep: int, epoch: int, step: int, loss: float, accuracy: float
    ):
        # todo : move this into callback
        """
                _default_progress_callback reports the current fold, rep, epoch, step and loss for every
        training iteration to the default logger
        """
        self.logger.info(
            "[%d, %d, %d, %d] loss: %.4f, accuracy: %.4f"
            % (fold, rep, epoch, step, loss, accuracy)
        )

    def __init__(
        self,
        experiment_name: str,
        data_module: OpenMLDataModule,
        opt: Callable = torch.optim.AdamW,
        opt_kwargs: dict = {"lr": 3e-4, "weight_decay": 1e-4},
        loss_fn: Callable = torch.nn.CrossEntropyLoss,
        loss_fn_kwargs: dict = {},
        callbacks: List[Callback] = [],
        use_tensorboard: bool = True,
        metrics: List[Callable] = [],
        scheduler=torch.optim.lr_scheduler.CosineAnnealingLR,
        scheduler_kwargs: dict = {"T_max": 50, "eta_min": 1e-6},
        **kwargs,
    ):
        self.experiment_name = experiment_name
        self.config_gen = DefaultConfigGenerator()
        self.model_config = self.config_gen.return_model_config()
        self.data_module = data_module
        self.callbacks = callbacks
        self.metrics = metrics

        self.config = SimpleNamespace(
            **{**self.model_config.__dict__, **self.data_module.data_config.__dict__}
        )
        # update the config with the user defined values
        self.config.__dict__.update(kwargs)
        self.config.opt = opt
        self.config.opt_kwargs = opt_kwargs
        self.config.loss_fn_kwargs = loss_fn_kwargs
        if loss_fn is not None:
            self.loss_fn = loss_fn(**self.config.loss_fn_kwargs)
        self.config.progress_callback = self._default_progress_callback
        self.logger: logging.Logger = logging.getLogger(__name__)

        self.user_defined_measures = OrderedDict()
        # Tensorboard support
        timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
        self.tensorboard_writer = None

        if use_tensorboard:
            self.tensorboard_writer = SummaryWriter(
                comment=experiment_name,
                log_dir=f"tensorboard_logs/{experiment_name}/{timestamp}",
            )

        self.loss = 0
        self.training_state = True

        self.phases = [0.2, 0.8]
        self.config.scheduler = scheduler
        self.config.scheduler_kwargs = scheduler_kwargs

        # Add default callbacks
        self.cbfs = [
            Recorder,
            partial(AvgStatsCallback, self.metrics),
            # partial(ParamScheduler, "lr", self.scheds),
            partial(PutDataOnDeviceCallback, self.config.device),
        ]
        if self.tensorboard_writer is not None:
            self.cbfs.append(partial(TensorBoardCallback, self.tensorboard_writer))

        self.add_callbacks()

    def export_to_onnx(self, model_copy):
        """
        Converts the model to ONNX format. Uses a hack for now (global variable) to get the sample input.
        """
        global sample_input
        f = io.BytesIO()
        torch.onnx.export(model_copy, sample_input, f)
        onnx_model = onnx.load_model_from_string(f.getvalue())
        onnx_ = onnx_model.SerializeToString()
        global last_models
        last_models = onnx_
        return onnx_

    def export_to_netron(self, onnx_file_name: str = f"model.onnx"):
        """
        Exports the model to ONNX format and serves it using netron.
        """
        if self.onnx_model is None:
            try:
                self.onnx_model = self.export_to_onnx(self.model)
            except Exception as e:
                raise ValueError("Model is not defined")
            raise ValueError("Model is not defined")

        # write the onnx model to a file
        with open(onnx_file_name, "wb") as f:
            f.write(self.onnx_model)
            print(f"Writing onnx model to {onnx_file_name}. Delete if neeeded")

        # serve with netro
        netron.start(onnx_file_name)

    def run_model_on_fold(
        self,
        model: torch.nn.Module,
        task: OpenMLTask,
        X_train: pd.DataFrame,
        rep_no: int,
        fold_no: int,
        y_train: Optional[pd.Series],
        X_test: pd.DataFrame,
    ):
        # if task has no class labels, we assign the class labels to be the unique values in the training set
        if task.class_labels is None:
            task.class_labels = y_train.unique()

        # Add the user defined callbacks

        self.model = copy.deepcopy(model)

        try:
            data, model_classes = self.run_training(task, X_train, y_train, X_test)

        except AttributeError as e:
            # typically happens when training a regressor8 on classification task
            raise PyOpenMLError(str(e))

        # In supervised learning this returns the predictions for Y
        pred_y, proba_y = self.run_evaluation(task, data, model_classes)

        # Convert predictions to class labels
        if task.class_labels is not None:
            pred_y = [task.class_labels[i] for i in pred_y]

        # Convert model to onnx
        onnx_ = self.export_to_onnx(self.model)

        # Hack to store the last model for ONNX conversion
        global last_models
        # last_models = onnx_
        self.onnx_model = onnx_

        return pred_y, proba_y, self.user_defined_measures, None

    def check_config(self):
        raise NotImplementedError

    def _prediction_to_probabilities(
        self, y: np.ndarray, classes: List[Any]
    ) -> np.ndarray:
        """Transforms predicted probabilities to match with OpenML class indices.

        Parameters
        ----------
        y : np.ndarray
            Predicted probabilities (possibly omitting classes if they were not present in the
            training data).
        model_classes : list
            List of classes known_predicted by the model, ordered by their index.

        Returns
        -------
        np.ndarray
        """
        # y: list or numpy array of predictions
        # model_classes: mapping from original array id to
        # prediction index id
        if not isinstance(classes, list):
            raise ValueError(
                "please convert model classes to list prior to calling this fn"
            )
        result = np.zeros((len(y), len(classes)), dtype=np.float32)
        for obs, prediction_idx in enumerate(y):
            result[obs][prediction_idx] = 1.0
        return result

    def run_evaluation(self, task, data, model_classes):
        if isinstance(task, OpenMLSupervisedTask):
            self.model.eval()
            pred_y = self.pred_test(task, self.model, data.test_dl, self.config.predict)
        else:
            raise ValueError(task)

        if isinstance(task, OpenMLClassificationTask):
            try:
                self.model.eval()
                proba_y = self.pred_test(
                    task, self.model, data.test_dl, self.config.predict_proba
                )

            except AttributeError:
                if task.class_labels is not None:
                    proba_y = self._prediction_to_probabilities(
                        pred_y, list(task.class_labels)
                    )
                else:
                    raise ValueError("The task has no class labels")

            if task.class_labels is not None:
                if proba_y.shape[1] != len(task.class_labels):
                    # Remap the probabilities in case there was a class missing
                    # at training time. By default, the classification targets
                    # are mapped to be zero-based indices to the actual classes.
                    # Therefore, the model_classes contain the correct indices to
                    # the correct probability array. Example:
                    # classes in the dataset: 0, 1, 2, 3, 4, 5
                    # classes in the training set: 0, 1, 2, 4, 5
                    # then we need to add a column full of zeros into the probabilities
                    # for class 3 because the rest of the library expects that the
                    # probabilities are ordered the same way as the classes are ordered).
                    print("The size of the tensor of predicted probabilities does not match the number of classes. Check the shape of the output of your model.")
                    proba_y_new = np.zeros((proba_y.shape[0], len(task.class_labels)))
                    for idx, model_class in enumerate(model_classes):
                        proba_y_new[:, model_class] = proba_y[:, idx]
                    proba_y = proba_y_new

                if proba_y.shape[1] != len(task.class_labels):
                    message = "Estimator only predicted for {}/{} classes!".format(
                        proba_y.shape[1],
                        len(task.class_labels),
                    )
                    warnings.warn(message)
                    self.logger.warning(message)
            else:
                raise ValueError("The task has no class labels")

        elif isinstance(task, OpenMLRegressionTask):
            proba_y = None

        else:
            raise TypeError(type(task))
        return pred_y, proba_y

    def run_training(self, task, X_train, y_train, X_test):
        if isinstance(task, OpenMLSupervisedTask) or isinstance(
            task, OpenMLClassificationTask
        ):
            self.opt = self.config.opt(
                self.model.parameters(), **self.config.opt_kwargs
            )
            self.scheduler = self.config.scheduler(
                optimizer=self.opt, **self.config.scheduler_kwargs
            )
            if self.loss_fn is None:
                self.loss_fn = self.config.loss_fn(task)
            self.device = self.config.device

            if self.config.device != "cpu":
                self.loss_fn = self.loss_fn.to(self.config.device)

            self.data, self.model_classes = self.data_module.get_data(
                X_train, y_train, X_test, task
            )
            self.learn = Learner(
                model=self.model,
                opt=self.opt,
                loss_fn=self.loss_fn,
                scheduler=self.scheduler,
                data=self.data,
                model_classes=self.model_classes,
            )
            self.learn.device = self.device
            self.learn.model.to(self.device)
            gc.collect()

            self.runner = ModelRunner(cb_funcs=self.cbfs)

            # some additional default callbacks
            self.stats = self.runner.cbs[1]
            self.plot_loss = self.stats.plot_loss
            self.plot_lr = self.stats.plot_lr
            self.plot_metric = self.stats.plot_metric
            self.plot_all_metrics = self.stats.plot_all_metrics

            self.learn.model.train()
            self.runner.fit(epochs=self.config.epoch_count, learn=self.learn)
            self.learn.model.eval()

            self.lrs = self.runner.cbs[1].lrs

            print("Loss", self.runner.loss)
        else:
            raise Exception("OpenML Task type not supported")
        return self.data, self.model_classes

    def add_callbacks(self):
        """
        Adds the user-defined callbacks to the list of callbacks
        """
        if self.callbacks is not None and len(self.callbacks) > 0:
            for callback in self.callbacks:
                if callback not in self.cbfs:
                    self.cbfs.append(callback)
                else:
                    # replace the callback with the new one in the same position
                    self.cbfs[self.cbfs.index(callback)] = callback

    def pred_test(self, task, model_copy, test_loader, predict_func):
        probabilities = []
        for batch_idx, inputs in enumerate(test_loader):
            inputs = self.config.sanitize(inputs)
            # if torch.cuda.is_available():
            inputs = inputs.to(self.config.device)

            # Perform inference on the batch
            pred_y_batch = model_copy(inputs)
            pred_y_batch = predict_func(pred_y_batch, task)
            pred_y_batch = pred_y_batch.cpu().detach().numpy()

            probabilities.append(pred_y_batch)

            # Concatenate probabilities from all batches
        pred_y = np.concatenate(probabilities, axis=0)
        return pred_y

add_callbacks()

Adds the user-defined callbacks to the list of callbacks

Source code in openml_pytorch/trainer.py
833
834
835
836
837
838
839
840
841
842
843
def add_callbacks(self):
    """
    Adds the user-defined callbacks to the list of callbacks
    """
    if self.callbacks is not None and len(self.callbacks) > 0:
        for callback in self.callbacks:
            if callback not in self.cbfs:
                self.cbfs.append(callback)
            else:
                # replace the callback with the new one in the same position
                self.cbfs[self.cbfs.index(callback)] = callback

export_to_netron(onnx_file_name=f'model.onnx')

Exports the model to ONNX format and serves it using netron.

Source code in openml_pytorch/trainer.py
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
def export_to_netron(self, onnx_file_name: str = f"model.onnx"):
    """
    Exports the model to ONNX format and serves it using netron.
    """
    if self.onnx_model is None:
        try:
            self.onnx_model = self.export_to_onnx(self.model)
        except Exception as e:
            raise ValueError("Model is not defined")
        raise ValueError("Model is not defined")

    # write the onnx model to a file
    with open(onnx_file_name, "wb") as f:
        f.write(self.onnx_model)
        print(f"Writing onnx model to {onnx_file_name}. Delete if neeeded")

    # serve with netro
    netron.start(onnx_file_name)

export_to_onnx(model_copy)

Converts the model to ONNX format. Uses a hack for now (global variable) to get the sample input.

Source code in openml_pytorch/trainer.py
618
619
620
621
622
623
624
625
626
627
628
629
def export_to_onnx(self, model_copy):
    """
    Converts the model to ONNX format. Uses a hack for now (global variable) to get the sample input.
    """
    global sample_input
    f = io.BytesIO()
    torch.onnx.export(model_copy, sample_input, f)
    onnx_model = onnx.load_model_from_string(f.getvalue())
    onnx_ = onnx_model.SerializeToString()
    global last_models
    last_models = onnx_
    return onnx_

convert_to_rgb(image)

Converts an image to RGB mode if it is not already in that mode.

Parameters: image (PIL.Image): The image to be converted.

Returns: PIL.Image: The converted image in RGB mode.

Source code in openml_pytorch/trainer.py
48
49
50
51
52
53
54
55
56
57
58
59
60
def convert_to_rgb(image):
    """
    Converts an image to RGB mode if it is not already in that mode.

    Parameters:
    image (PIL.Image): The image to be converted.

    Returns:
    PIL.Image: The converted image in RGB mode.
    """
    if image.mode != "RGB":
        return image.convert("RGB")
    return image