Use a Custom Optimizer¶
In [ ]:
Copied!
# openml imports
import openml
import openml_pytorch as op
from openml_pytorch.callbacks import TestCallback
from openml_pytorch.metrics import accuracy
from openml_pytorch.trainer import convert_to_rgb
# pytorch imports
from torch.utils.tensorboard.writer import SummaryWriter
from torchvision.transforms import Compose, Resize, ToPILImage, ToTensor, Lambda
import torchvision
# other imports
import logging
import warnings
# set up logging
openml.config.logger.setLevel(logging.DEBUG)
op.config.logger.setLevel(logging.DEBUG)
warnings.simplefilter(action='ignore')
# openml imports
import openml
import openml_pytorch as op
from openml_pytorch.callbacks import TestCallback
from openml_pytorch.metrics import accuracy
from openml_pytorch.trainer import convert_to_rgb
# pytorch imports
from torch.utils.tensorboard.writer import SummaryWriter
from torchvision.transforms import Compose, Resize, ToPILImage, ToTensor, Lambda
import torchvision
# other imports
import logging
import warnings
# set up logging
openml.config.logger.setLevel(logging.DEBUG)
op.config.logger.setLevel(logging.DEBUG)
warnings.simplefilter(action='ignore')
Data¶
Define image transformations¶
In [ ]:
Copied!
transform = Compose(
[
ToPILImage(), # Convert tensor to PIL Image to ensure PIL Image operations can be applied.
Lambda(convert_to_rgb), # Convert PIL Image to RGB if it's not already.
Resize((64, 64)), # Resize the image.
ToTensor(), # Convert the PIL Image back to a tensor.
]
)
transform = Compose(
[
ToPILImage(), # Convert tensor to PIL Image to ensure PIL Image operations can be applied.
Lambda(convert_to_rgb), # Convert PIL Image to RGB if it's not already.
Resize((64, 64)), # Resize the image.
ToTensor(), # Convert the PIL Image back to a tensor.
]
)
Configure the Data Module and Choose a Task¶
- Make sure the data is present in the
file_dir
directory, and thefilename_col
is correctly set along with this column correctly pointing to where your data is stored.
In [ ]:
Copied!
data_module = op.OpenMLDataModule(
type_of_data="image",
file_dir="datasets",
filename_col="image_path",
target_mode="categorical",
target_column="label",
batch_size=64,
transform=transform,
)
# Download the OpenML task for tiniest imagenet
task = openml.tasks.get_task(363295)
data_module = op.OpenMLDataModule(
type_of_data="image",
file_dir="datasets",
filename_col="image_path",
target_mode="categorical",
target_column="label",
batch_size=64,
transform=transform,
)
# Download the OpenML task for tiniest imagenet
task = openml.tasks.get_task(363295)
Model¶
In [ ]:
Copied!
model = torchvision.models.resnet18(num_classes=200)
model = torchvision.models.resnet18(num_classes=200)
Train your model on the data¶
- Note that by default, OpenML runs a 10 fold cross validation on the data. You cannot change this for now.
- The default Learning rate scheduler is CosineAnnealingLR with {"T_max": 50, "eta_min": 1e-6}, you can change this to whatever you want
In [ ]:
Copied!
import torch
trainer = op.OpenMLTrainerModule(
experiment_name= "Tiny ImageNet",
data_module=data_module,
verbose=True,
epoch_count=1,
metrics= [op.metrics.accuracy],
# remove the TestCallback when you are done testing your pipeline. Having it here will make the pipeline run for a very short time.
callbacks=[
# TestCallback,
],
torch_lr_scheduler = torch.optim.lr_scheduler.StepLR, # The learning rate scheduler to use. Note that this is the class itself, not an instance of it.
lr_scheduler_kwargs = {"step_size": 1, "gamma": 0.1},
opt = torch.optim.AdamW,
opt_kwargs= {"lr": 1e-3, "weight_decay": 1e-4},
)
op.config.trainer = trainer
run = openml.runs.run_model_on_task(model, task, avoid_duplicate_runs=False)
import torch
trainer = op.OpenMLTrainerModule(
experiment_name= "Tiny ImageNet",
data_module=data_module,
verbose=True,
epoch_count=1,
metrics= [op.metrics.accuracy],
# remove the TestCallback when you are done testing your pipeline. Having it here will make the pipeline run for a very short time.
callbacks=[
# TestCallback,
],
torch_lr_scheduler = torch.optim.lr_scheduler.StepLR, # The learning rate scheduler to use. Note that this is the class itself, not an instance of it.
lr_scheduler_kwargs = {"step_size": 1, "gamma": 0.1},
opt = torch.optim.AdamW,
opt_kwargs= {"lr": 1e-3, "weight_decay": 1e-4},
)
op.config.trainer = trainer
run = openml.runs.run_model_on_task(model, task, avoid_duplicate_runs=False)
In [ ]:
Copied!
openml.config.apikey = ''
run = op.add_experiment_info_to_run(run=run, trainer=trainer)
run.publish()
openml.config.apikey = ''
run = op.add_experiment_info_to_run(run=run, trainer=trainer)
run.publish()