Skip to content

OpenML Integration

TensorflowExtension

Bases: Extension

Connect Keras to OpenML-Python.

Source code in openml_tensorflow/extension.py
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
class TensorflowExtension(Extension):
    """Connect Keras to OpenML-Python."""

    ################################################################################################
    # General setup

    @classmethod
    def can_handle_flow(cls, flow: 'OpenMLFlow') -> bool:
        """Check whether a given flow describes a Keras neural network.

        This is done by parsing the ``external_version`` field.

        Parameters
        ----------
        flow : OpenMLFlow

        Returns
        -------
        bool
        """
        return cls._is_tf_flow(flow)

    @classmethod
    def can_handle_model(cls, model: Any) -> bool:
        """Check whether a model is an instance of ``tf.models.Model``.

        Parameters
        ----------
        model : Any

        Returns
        -------
        bool
        """
        return isinstance(model, tensorflow.keras.models.Model)

    ################################################################################################
    # Methods for flow serialization and de-serialization

    def flow_to_model(self, flow: 'OpenMLFlow', initialize_with_defaults: bool = False) -> Any:
        """Initializes a Keras model based on a flow.

        Parameters
        ----------
        flow : mixed
            the object to deserialize (can be flow object, or any serialized
            parameter value that is accepted by)

        initialize_with_defaults : bool, optional (default=False)
            If this flag is set, the hyperparameter values of flows will be
            ignored and a flow with its defaults is returned.

        Returns
        -------
        mixed
        """
        return self._deserialize_tf(flow, initialize_with_defaults=initialize_with_defaults)

    def _deserialize_tf(
            self,
            o: Any,
            components: Optional[Dict] = None,
            initialize_with_defaults: bool = False,
            recursion_depth: int = 0,
    ) -> Any:
        """
        Recursive function to deserialize a tensorflow flow.

        This function delegates all work to the respective functions to deserialize special data
        structures etc.

        Parameters
        ----------
        o : mixed
            the object to deserialize (can be flow object, or any serialized
            parameter value that is accepted by)

        components : dict
            empty

        initialize_with_defaults : bool, optional (default=False)
            If this flag is set, the hyperparameter values of flows will be
            ignored and a flow with its defaults is returned.

        recursion_depth : int
            The depth at which this flow is called, mostly for debugging
            purposes

        Returns
        -------
        mixed
        """
        logging.info('-%s flow_to_keras START o=%s, components=%s, '
                     'init_defaults=%s' % ('-' * recursion_depth, o, components,
                                           initialize_with_defaults))
        depth_pp = recursion_depth + 1  # shortcut var, depth plus plus

        # First, we need to check whether the presented object is a json string.
        # JSON strings are used to encoder parameter values. By passing around
        # json strings for parameters, we make sure that we can flow_to_keras
        # the parameter values to the correct type.
        if isinstance(o, str):
            try:
                o = json.loads(o)
                try:
                    o = o[0:1000]
                except:
                    pass
            except JSONDecodeError:
                pass

        rval = None  # type: Any
        if isinstance(o, dict):
            rval = dict(
                (
                    self._deserialize_tf(
                        o=key,
                        components=components,
                        initialize_with_defaults=initialize_with_defaults,
                        recursion_depth=depth_pp,
                    ),
                    self._deserialize_tf(
                        o=value,
                        components=components,
                        initialize_with_defaults=initialize_with_defaults,
                        recursion_depth=depth_pp,
                    )
                )
                for key, value in sorted(o.items())
            )
        elif isinstance(o, (list, tuple)):
            rval = [
                self._deserialize_tf(
                    o=element,
                    components=components,
                    initialize_with_defaults=initialize_with_defaults,
                    recursion_depth=depth_pp,
                )
                for element in o
            ]
            if isinstance(o, tuple):
                rval = tuple(rval)
        elif isinstance(o, (bool, int, float, str)) or o is None:
            try:
                rval = o[0:100]
            except:
                rval = o
        elif isinstance(o, OpenMLFlow):
            if not self._is_tf_flow(o):
                raise ValueError('Only Tensorflow flows can be reinstantiated')
            rval = self._deserialize_model(
                flow=o,
                keep_defaults=initialize_with_defaults,
                recursion_depth=recursion_depth,
            )
        else:
            raise TypeError(o)
        logging.info('-%s flow_to_tf END   o=%s, rval=%s'
                     % ('-' * recursion_depth, o, rval))
        return rval

    def model_to_flow(self, model: Any) -> 'OpenMLFlow':
        """Transform a Keras model to a flow for uploading it to OpenML.

        Parameters
        ----------
        model : Any

        Returns
        -------
        OpenMLFlow
        """
        # Necessary to make pypy not complain about all the different possible return types
        return self._serialize_tf(model)

    def _serialize_tf(self, o: Any, parent_model: Optional[Any] = None) -> Any:
        rval = None  # type: Any
        if self.is_estimator(o):
            # is the main model or a submodel
            rval = self._serialize_model(o)
        elif isinstance(o, (list, tuple)):
            rval = [self._serialize_tf(element, parent_model) for element in o]
            if isinstance(o, tuple):
                rval = tuple(rval)
        elif isinstance(o, SIMPLE_TYPES) or o is None:
            if isinstance(o, tuple(SIMPLE_NUMPY_TYPES)):
                o = o.item()
            # base parameter values
            rval = o
        elif isinstance(o, dict):
            if not isinstance(o, OrderedDict):
                o = OrderedDict([(key, value) for key, value in sorted(o.items())])

            rval = OrderedDict()
            for key, value in o.items():
                if not isinstance(key, str):
                    raise TypeError('Can only use string as keys, you passed '
                                    'type %s for value %s.' %
                                    (type(key), str(key)))
                key = self._serialize_tf(key, parent_model)
                value = self._serialize_tf(value, parent_model)
                rval[key] = value
            rval = rval
            # Not sure below limit is used for reducing paramter size. 
            # if len(rval.keys()) > 15:
            #    rval = rval[list(rval.keys())[0]]
        else:
            if type(o) == np.ndarray:
                rval=o.item()
            else:
                if 'keras.src.metrics.base_metric.Mean' in str(type(o)):
                   rval = o._name
                #   This elif is only to make it compatibile with tensorflow version-2.10.0
                elif 'keras.metrics.base_metric.Mean' in str(type(o)):
                    rval = o._name
                else:
                   raise TypeError(o, type(o))
        return rval
    def get_version_information(self) -> List[str]:
        """List versions of libraries required by the flow.

        Libraries listed are ``Python``, ``tensorflow``, ``numpy`` and ``scipy``.

        Returns
        -------
        List
        """

        import tensorflow
        import scipy
        import numpy

        major, minor, micro, _, _ = sys.version_info
        python_version = 'Python_{}.'.format(
            ".".join([str(major), str(minor), str(micro)]))
        tensorflow_version = 'tensorflow_{}.'.format(tensorflow.__version__)
        numpy_version = 'NumPy_{}.'.format(numpy.__version__)
        scipy_version = 'SciPy_{}.'.format(scipy.__version__)

        return [python_version, tensorflow_version, numpy_version, scipy_version]

    def create_setup_string(self, model: Any) -> str:
        """Create a string which can be used to reinstantiate the given model.

        Parameters
        ----------
        model : Any

        Returns
        -------
        str
        """
        run_environment = " ".join(self.get_version_information())
        return run_environment + " " + str(model)

    @classmethod
    def _is_tf_flow(cls, flow: OpenMLFlow) -> bool:
#        breakpoint()
        return (flow.external_version.startswith('keras==')
                or ',tensorflow==' in flow.external_version)

    def _serialize_model(self, model: Any) -> OpenMLFlow:
        """Create an OpenMLFlow.

        Calls `tf_to_flow` recursively to properly serialize the
        parameters to strings and the components (other models) to OpenMLFlows.

        Parameters
        ----------
        model : Keras neural network

        Returns
        -------
        OpenMLFlow

        """
        # Get all necessary information about the model objects itself
        parameters, parameters_meta_info, subcomponents, subcomponents_explicit = \
            self._extract_information_from_model(model)

        # Create a flow name, which contains a hash of the parameters as part of the name
        # This is done in order to ensure that we are not exceeding the 1024 character limit
        # of the API, since NNs can become quite large
        class_name = "tensorflow." + model.__module__ + "." + model.__class__.__name__
        class_name += '.' + format(
            zlib.crc32(json.dumps(parameters, sort_keys=True).encode('utf8')),
            'x'
        )

        external_version = self._get_external_version_string(model, subcomponents)
        name = class_name

        dependencies = '\n'.join([
            self._format_external_version(
                'tensorflow',
                tensorflow.__version__,
            ),
            'numpy>=1.6.1',
            'scipy>=0.9',
        ])

        tensorflow_version = self._format_external_version('tensorflow', tensorflow.__version__)
        tensorflow_version_formatted = tensorflow_version.replace('==', '_')
        flow = OpenMLFlow(name=name,
                          class_name=class_name,
                          description='Automatically created tensorflow flow.',
                          model=model,
                          components=subcomponents,
                          parameters=parameters,
                          parameters_meta_info=parameters_meta_info,
                          external_version=external_version,
                          tags=['openml-python', 'tensorflow',
                                'python', tensorflow_version_formatted,

                                ],
                          language='English',
                          dependencies=dependencies)
        return flow

    def _get_external_version_string(
            self,
            model: Any,
            sub_components: Dict[str, OpenMLFlow],
    ) -> str:
        # Create external version string for a flow, given the model and the
        # already parsed dictionary of sub_components. Retrieves the external
        # version of all subcomponents, which themselves already contain all
        # requirements for their subcomponents. The external version string is a
        # sorted concatenation of all modules which are present in this run.
        model_package_name = model.__module__.split('.')[0]
        module = importlib.import_module(model_package_name)
        model_package_version_number = module.__version__  # type: ignore
        external_version = self._format_external_version(
            model_package_name, model_package_version_number,
        )
        openml_version = self._format_external_version('openml', openml.__version__)
        external_versions = set()
        external_versions.add(external_version)
        external_versions.add(openml_version)
        for visitee in sub_components.values():
            for external_version in visitee.external_version.split(','):
                external_versions.add(external_version)

        return ','.join(list(sorted(external_versions)))

    def _from_parameters(self, parameters: 'OrderedDict[str, Any]') -> Any:
        """ Get a tensorflow model from flow parameters """

        # Create a dict and recursively fill it with model components
        # First do this for non-layer items, then layer items.
        config = {}

        # Add the expected configuration parameters back to the configuration dictionary,
        # as long as they are not layers, since they need to be deserialized separately
        for k, v in parameters.items():
            if not LAYER_PATTERN.match(k):
                config[k] = self._deserialize_tf(v)

        # Recreate the layers list and start to deserialize them back to the correct location
        config['config']['layers'] = []
        for k, v in parameters.items():
            if LAYER_PATTERN.match(k):
                v = self._deserialize_tf(v)
                config['config']['layers'].append(v)

        # Deserialize the model from the configuration dictionary
        model = tensorflow.keras.layers.deserialize(config)

        # Attempt to recompile the model if compilation parameters were present
        # during serialization
        if 'optimizer' in parameters:
            training_config = self._deserialize_tf(parameters['optimizer'])
            optimizer_config = training_config['optimizer_config']
            optimizer = tensorflow.keras.optimizers.deserialize(optimizer_config)

            # Recover loss functions and metrics
            loss = training_config['loss']
            metrics = training_config['metrics']
            sample_weight_mode = training_config.get('sample_weight_mode', None)
            loss_weights = training_config.get('loss_weights', None)

            # Compile model
            model.compile(optimizer=optimizer,
                          loss=loss,
                          metrics=metrics,
                          loss_weights=loss_weights,
                          sample_weight_mode=sample_weight_mode)
        else:
            warnings.warn('No training configuration found inside the flow: '
                          'the model was *not* compiled. '
                          'Compile it manually.')

        return model 

    def _get_parameters(self, model: Any) -> 'OrderedDict[str, Optional[str]]':
        # Get the parameters from a model in an OrderedDict
        parameters = OrderedDict()  # type: OrderedDict[str, Any]

        # Construct the configuration dictionary in the same manner as
        # keras.engine.Network.to_json does
        model_config = {
            'class_name': model.__class__.__name__,
            'config': model.get_config(),
            'tensorflow_version': tensorflow.__version__,
            'backend': tensorflow.keras.backend.backend()
        }
        layers = []

        # In some cases a layer can be a complete pretrained model (eg transfer learning). 
        # Hence 'layer' list for such layers are flattened so that each layer of the pretrained model 
        # is treated separately. this is to ensure OpenML server donot run into limit error while publishing the model. 
        for i in range(len(model_config['config']['layers'])):
            if 'layers' in model_config['config']['layers'][i]['config'].keys():
                layers.extend(model_config['config']['layers'][i]['config']['layers'])
            else:
                layers.append(model_config['config']['layers'][i])    

        # Remove the layers from the configuration in order to allow them to be
        # pretty printed as model parameters
        del model_config['config']['layers']

        # Add the rest of the model configuration entries to the parameter list
        for k, v in model_config.items():
            parameters[k] = self._serialize_tf(v, model)

        # Compute the format of the layer numbering. This pads the layer numbers with 0s in
        # order to ensure that the layers are printed in a human-friendly order, instead of
        # having weird orderings
        max_len = int(np.ceil(np.log10(len(layers))))
        len_format = '{0:0>' + str(max_len) + '}'

        # Add the layers as hyper-parameters
        for i, v in enumerate(layers):
            layer = v['config']
            # Some models contain "/" in layer name to denote hirerachy, while some denote it using "_"
            # To correct this all "/" in layer[name] is replaced by "_"
            k = 'layer' + len_format.format(i) + "_" + layer['name'].replace('/', '_')
            parameters[k] = self._serialize_tf(v, model)

        # Introduce the optimizer settings as hyper-parameters, if the model has been compiled
        if model.optimizer:
            parameters['optimizer'] = self._serialize_tf({
                'optimizer_config': {
                    'class_name': model.optimizer.__class__.__name__,
                    'config': model.optimizer.get_config()
                },
                'loss': model.loss,
                'metrics': model.metrics,
                # 'weighted_metrics': model.metrics,
                # 'sample_weight_mode': model.sample_weight_mode,
                # 'loss_weights': model.loss_weights,
            }, model)

        return parameters

    def _extract_information_from_model(
            self,
            model: Any,
    ) -> Tuple[
        'OrderedDict[str, Optional[str]]',
        'OrderedDict[str, Optional[Dict]]',
        'OrderedDict[str, OpenMLFlow]',
        Set,
    ]:
        # Stores all entities that should become subcomponents (unused)
        sub_components = OrderedDict()  # type: OrderedDict[str, OpenMLFlow]
        # Stores the keys of all subcomponents that should become (unused)
        sub_components_explicit = set()  # type: Set
        parameters = OrderedDict()  # type: OrderedDict[str, Optional[str]]
        parameters_meta_info = OrderedDict()  # type: OrderedDict[str, Optional[Dict]]

        model_parameters = self._get_parameters(model)
        for k, v in sorted(model_parameters.items(), key=lambda t: t[0]):
            rval = self._serialize_tf(v, model)
            rval = json.dumps(rval)

            parameters[k] = rval
            parameters_meta_info[k] = OrderedDict((('description', None), ('data_type', None)))

        return parameters, parameters_meta_info, sub_components, sub_components_explicit

    def _deserialize_model(
            self,
            flow: OpenMLFlow,
            keep_defaults: bool,
            recursion_depth: int,
    ) -> Any:
        logging.info('-%s deserialize %s' % ('-' * recursion_depth, flow.name))
        self._check_dependencies(flow.dependencies)

        parameters = flow.parameters
        components = flow.components
        parameter_dict = OrderedDict()  # type: OrderedDict[str, Any]

        # Do a shallow copy of the components dictionary so we can remove the
        # components from this copy once we added them into the layer list. This
        # allows us to not consider them any more when looping over the
        # components, but keeping the dictionary of components untouched in the
        # original components dictionary.
        components_ = copy.copy(components)

        for name in parameters:
            value = parameters.get(name)
            logging.info('--%s flow_parameter=%s, value=%s' %
                         ('-' * recursion_depth, name, value))
            rval = self._deserialize_tf(
                value,
                components=components_,
                initialize_with_defaults=keep_defaults,
                recursion_depth=recursion_depth + 1,
            )
            parameter_dict[name] = rval

        for name in components:
            if name in parameter_dict:
                continue
            if name not in components_:
                continue
            value = components[name]
            logging.info('--%s flow_component=%s, value=%s'
                         % ('-' * recursion_depth, name, value))
            rval = self._deserialize_tf(
                value,
                recursion_depth=recursion_depth + 1,
            )
            parameter_dict[name] = rval

        return self._from_parameters(parameter_dict)

    def _check_dependencies(self, dependencies: str) -> None:
        """
        Checks whether the dependencies required for the deserialization of an OpenMLFlow are met

        Parameters
        ----------
        dependencies : str
            a string representing the required dependencies

        Returns
        -------
        None
        """
        if not dependencies:
            return

        dependencies_list = dependencies.split('\n')
        for dependency_string in dependencies_list:
            match = DEPENDENCIES_PATTERN.match(dependency_string)
            if not match:
                raise ValueError('Cannot parse dependency %s' % dependency_string)

            dependency_name = match.group('name')
            operation = match.group('operation')
            version = match.group('version')

            module = importlib.import_module(dependency_name)
            required_version = LooseVersion(version)
            installed_version = LooseVersion(module.__version__)  # type: ignore

            if operation == '==':
                check = required_version == installed_version
            elif operation == '>':
                check = installed_version > required_version
            elif operation == '>=':
                check = (installed_version > required_version
                         or installed_version == required_version)
            else:
                raise NotImplementedError(
                    'operation \'%s\' is not supported' % operation)
            if not check:
                raise ValueError('Trying to deserialize a model with dependency '
                                 '%s not satisfied.' % dependency_string)

    def _format_external_version(
            self,
            model_package_name: str,
            model_package_version_number: str,
    ) -> str:
        """
        Returns a formatted string representing the required dependencies for a flow

        Parameters
        ----------
        model_package_name : str
            the name of the required package
        model_package_version_number : str
            the version of the required package
        Returns
        -------
        str
        """
        return '%s==%s' % (model_package_name, model_package_version_number)

    ################################################################################################
    # Methods for performing runs with extension modules

    def is_estimator(self, model: Any) -> bool:
        """Check whether the given model is a Keras neural network.

        This function is only required for backwards compatibility and will be removed in the
        near future.

        Parameters
        ----------
        model : Any

        Returns
        -------
        bool
        """
        return isinstance(model, tensorflow.keras.models.Model)

    def seed_model(self, model: Any, seed: Optional[int] = None) -> Any:
        """
        Not applied for Keras, since there are no random states in Keras.

        Parameters
        ----------
        model : keras model
            The model to be seeded
        seed : int
            The seed to initialize the RandomState with. Unseeded subcomponents
            will be seeded with a random number from the RandomState.

        Returns
        -------
        Any
        """

        return model

    def _run_model_on_fold(
            self,
            model: Any,
            task: 'OpenMLTask',
            X_train: Union[np.ndarray, scipy.sparse.spmatrix, pd.DataFrame],
            rep_no: int,
            fold_no: int,
            y_train: Optional[np.ndarray] = None,
            X_test: Optional[Union[np.ndarray, scipy.sparse.spmatrix, pd.DataFrame]] = None,
    ) -> Tuple[
        np.ndarray,
        np.ndarray,
        'OrderedDict[str, float]',
        Optional[OpenMLRunTrace],
        Optional[Any]
    ]:
        """Run a model on a repeat,fold,subsample triplet of the task and return prediction
        information.

        Furthermore, it will measure run time measures in case multi-core behaviour allows this.
        * exact user cpu time will be measured if the number of cores is set (recursive throughout
        the model) exactly to 1
        * wall clock time will be measured if the number of cores is set (recursive throughout the
        model) to any given number (but not when it is set to -1)

        Returns the data that is necessary to construct the OpenML Run object. Is used by
        run_task_get_arff_content. Do not use this function unless you know what you are doing.

        Parameters
        ----------
        model : Any
            The UNTRAINED model to run. The model instance will be copied and not altered.
        task : OpenMLTask
            The task to run the model on.
        X_train : array-like
            Training data for the given repetition and fold.
        rep_no : int
            The repeat of the experiment (0-based; in case of 1 time CV, always 0)
        fold_no : int
            The fold nr of the experiment (0-based; in case of holdout, always 0)
        y_train : Optional[np.ndarray] (default=None)
            Target attributes for supervised tasks. In case of classification, these are integer
            indices to the potential classes specified by dataset.
        X_test : Optional, array-like (default=None)
            Test attributes to test for generalization in supervised tasks.

        Returns
        -------
        predictions : np.ndarray
            Model predictions.
        probabilities :  Optional, np.ndarray
            Predicted probabilities (only applicable for supervised classification tasks).
        user_defined_measures : OrderedDict[str, float]
            User defined measures that were generated on this fold
        trace : Optional, OpenMLRunTrace
            Hyperparameter optimization trace (only applicable for supervised tasks with
            hyperparameter optimization).
        additional_information: Optional, Any
            Additional information provided by the extension to be converted into additional files.
        """

        def _prediction_to_probabilities(y: np.ndarray, classes: List[Any]) -> np.ndarray:
            """Transforms predicted probabilities to match with OpenML class indices.

            Parameters
            ----------
            y : np.ndarray
                Predicted probabilities (possibly omitting classes if they were not present in the
                training data).
            model_classes : list
                List of classes known_predicted by the model, ordered by their index.

            Returns
            -------
            np.ndarray
            """
            # y: list or numpy array of predictions
            # model_classes: keras classifier mapping from original array id to
            # prediction index id
            if not isinstance(classes, list):
                raise ValueError('please convert model classes to list prior to '
                                 'calling this fn')
            result = np.zeros((len(y), len(classes)), dtype=np.float32)
            for obs, prediction_idx in enumerate(y):
                result[obs][prediction_idx] = 1.0
            return result

        if isinstance(task, OpenMLSupervisedTask):
            if y_train is None:
                raise TypeError('argument y_train must not be of type None')
            if X_test is None:
                raise TypeError('argument X_test must not be of type None')

        # This might look like a hack, and it is, but it maintains the compilation status,
        # in contrast to clone_model, and also is faster than using get_config + load_from_config
        # since it avoids string parsing
        import dill
        import weakref
        model_copy = dill.loads(dill.dumps(model))
        # model_copy = tensorflow.keras.models.clone_model(model, input_tensors=None, clone_function=None)
        #model_copy = pickle.loads(pickle.dumps(model))
        user_defined_measures = OrderedDict()  # type: 'OrderedDict[str, float]'

        #from sklearn import preprocessing
        #le = preprocessing.LabelEncoder()
        #print("y_train",y_train)
        #X_train['encoded_labels'] = le.fit(y_train).transform(y_train)
        #X_train['encoded_labels'] = X_train['encoded_labels'].astype("string")

        X_train['labels'] = y_train
        #print("labels",X_train['labels'])
        class_names = sorted(y_train.unique())
        #print("classes", class_names)

        kwargs = config.kwargs if config.kwargs is not None else {}


        if config.perform_validation:

            from sklearn.model_selection import train_test_split
            from tensorflow.keras.preprocessing.image import ImageDataGenerator

            # TODO: Here we're assuming that X has a label column, this won't work in general
            X_train_train, x_val = train_test_split(X_train, test_size=config.validation_split, shuffle=True, stratify=X_train['labels'], random_state=0)

            datagen_train = config.datagen
            train_generator = datagen_train.flow_from_dataframe(dataframe=X_train_train, 
                                            directory=config.dir,
                                            x_col=config.x_col, y_col='labels',
                                            class_mode="categorical",
                                            classes = class_names,
                                            target_size=config.target_size,
                                            batch_size=config.batch_size)

            datagen_valid = config.datagen_valid
            valid_generator = datagen_valid.flow_from_dataframe(dataframe=x_val,
                                            directory=config.dir,
                                            x_col=config.x_col, y_col='labels',
                                            class_mode="categorical",
                                            classes = class_names,
                                            target_size=config.target_size,
                                            batch_size=config.batch_size)
        else:
            from tensorflow.keras.preprocessing.image import ImageDataGenerator
            datagen = config.datagen
            train_generator = datagen.flow_from_dataframe(dataframe=X_train, directory=config.dir,
                                            x_col=config.x_col, y_col='labels',
                                            class_mode="categorical",
                                            classes = class_names,
                                            target_size=config.target_size,
                                            batch_size=config.batch_size)

        try:
            if isinstance(task, OpenMLSupervisedTask):
                print(f"Training ({len(X_train)} samples)")


                if config.perform_validation:
                    model_copy.fit(train_generator,
                    steps_per_epoch=config.step_per_epoch,
                    validation_data = valid_generator, 
                    validation_steps =  valid_generator.n//valid_generator.batch_size,
                    epochs=config.epoch,
                    **kwargs)

                else:
                    model_copy.fit(train_generator,
                    steps_per_epoch=config.step_per_epoch,
                    epochs=config.epoch,
                    **kwargs)

                #print('model_trained')

        except AttributeError as e:
            # typically happens when training a regressor on classification task
            raise PyOpenMLError(str(e))

        #class_mapping = train_generator.class_indices  
        #print("Class mapping",class_mapping)
        #classes_ordered = sorted(class_mapping, key=class_mapping.get)
        #print("Classes ordered",classes_ordered)
        # In supervised learning this returns the predictions for Y

        #print("X test",X_test)
        datagen_test = ImageDataGenerator()
        test_generator = datagen_test.flow_from_dataframe(dataframe=X_test, 
                                             directory=config.dir,
                                             class_mode=None,
                                             x_col=config.x_col,
                                             batch_size=32,
                                             shuffle=False,
                                             target_size=config.target_size)
        print(f"Testing ({len(X_test)} samples)")
        if isinstance(task, OpenMLSupervisedTask):
            pred_y = model_copy.predict(test_generator)
            proba_y = pred_y
            if isinstance(task, OpenMLClassificationTask):
                pred_y = np.argmax(pred_y, axis=-1)
                #print("preds", pred_y)
            #elif isinstance(task, OpenMLRegressionTask):
            #    pred_y = tensorflow.keras.backend.reshape(pred_y, (-1,))
            #pred_y = tensorflow.keras.backend.eval(pred_y)  
        else:
            raise ValueError(task)

        # Remap the probabilities in case there was a class missing at training time
        # By default, the classification targets are mapped to be zero-based indices
        # to the actual classes. Therefore, the model_classes contain the correct
        # indices to the correct probability array. Example:
        # classes in the dataset: 0, 1, 2, 3, 4, 5
        # classes in the training set: 0, 1, 2, 4, 5
        # then we need to add a column full of zeros into the probabilities for class 3
        # (because the rest of the library expects that the probabilities are ordered
        # the same way as the classes are ordered).
        if isinstance(task, OpenMLClassificationTask):
            if task.class_labels is not None:
                if proba_y.shape[1] != len(task.class_labels):
                    model_classes = np.sort(X_train['labels'].astype('int').unique())
                    proba_y_new = np.zeros((proba_y.shape[0], len(task.class_labels)))
                    for idx, model_class in enumerate(model_classes):
                        proba_y_new[:, model_class] = proba_y[:, idx]
                    proba_y = proba_y_new

                if proba_y.shape[1] != len(task.class_labels):
                    message = "Estimator only predicted for {}/{} classes!".format(
                        proba_y.shape[1], len(task.class_labels),
                    )
                    warnings.warn(message)
                    openml.config.logger.warn(message)

        elif isinstance(task, OpenMLRegressionTask):
            proba_y = None
        else:
            raise TypeError(type(task))

        # Adjust prediction labels according to train_generator
        # pred_y = [int(classes_ordered[p_y]) for p_y in pred_y]
        pred_y = [class_names[i] for i in pred_y]

        #pred_y = le.inverse_transform(pred_y)
        #print("pred classes", pred_y)

        #pred_y = pred_y.astype('str')
        #print("pred inverse encoded str", pred_y)

        # Convert the TensorFlow model to ONNX
        onnx_model, _ = tf2onnx.convert.from_keras(model_copy, opset=13)
        onnx_ = onnx_model.SerializeToString()
        global last_models
        last_models = onnx_

        return pred_y, proba_y, user_defined_measures, None

    def compile_additional_information(
            self,
            task: 'OpenMLTask',
            additional_information: List[Tuple[int, int, Any]]
    ) -> Dict[str, Tuple[str, str]]:
        """Compiles additional information provided by the extension during the runs into a final
        set of files.

        Parameters
        ----------
        task : OpenMLTask
            The task the model was run on.
        additional_information: List[Tuple[int, int, Any]]
            A list of (fold, repetition, additional information) tuples obtained during training.

        Returns
        -------
        files : Dict[str, Tuple[str, str]]
            A dictionary of files with their file name and contents.
        """
        return dict()

    def obtain_parameter_values(
            self,
            flow: 'OpenMLFlow',
            model: Any = None,
    ) -> List[Dict[str, Any]]:
        """Extracts all parameter settings required for the flow from the model.

        If no explicit model is provided, the parameters will be extracted from `flow.model`
        instead.

        Parameters
        ----------
        flow : OpenMLFlow
            OpenMLFlow object (containing flow ids, i.e., it has to be downloaded from the server)

        model: Any, optional (default=None)
            The model from which to obtain the parameter values. Must match the flow signature.
            If None, use the model specified in ``OpenMLFlow.model``.

        Returns
        -------
        list
            A list of dicts, where each dict has the following entries:
            - ``oml:name`` : str: The OpenML parameter name
            - ``oml:value`` : mixed: A representation of the parameter value
            - ``oml:component`` : int: flow id to which the parameter belongs
        """
        openml.flows.functions._check_flow_for_server_id(flow)

        def get_flow_dict(_flow):
            flow_map = {_flow.name: _flow.flow_id}
            for subflow in _flow.components:
                flow_map.update(get_flow_dict(_flow.components[subflow]))
            return flow_map

        def extract_parameters(_flow, _flow_dict, component_model,
                               _main_call=False, main_id=None):
            # _flow is openml flow object, _param dict maps from flow name to flow
            # id for the main call, the param dict can be overridden (useful for
            # unit tests / sentinels) this way, for flows without subflows we do
            # not have to rely on _flow_dict
            exp_parameters = set(_flow.parameters)
            exp_components = set(_flow.components)

            _model_parameters = self._get_parameters(component_model)

            model_parameters = set(_model_parameters.keys())
            if len((exp_parameters | exp_components) ^ model_parameters) != 0:
                flow_params = sorted(exp_parameters | exp_components)
                model_params = sorted(model_parameters)
                raise ValueError('Parameters of the model do not match the '
                                 'parameters expected by the '
                                 'flow:\nexpected flow parameters: '
                                 '%s\nmodel parameters: %s' % (flow_params,
                                                               model_params))

            _params = []
            for _param_name in _flow.parameters:
                _current = OrderedDict()
                _current['oml:name'] = _param_name

                current_param_values = self.model_to_flow(_model_parameters[_param_name])

                # Try to filter out components (a.k.a. subflows) which are
                # handled further down in the code (by recursively calling
                # this function)!
                if isinstance(current_param_values, openml.flows.OpenMLFlow):
                    continue

                # vanilla parameter value
                parsed_values = json.dumps(current_param_values)
                if len(current_param_values)>2000:
                   current_param_values = current_param_values[0:1000]
                _current['oml:value'] = parsed_values
                if _main_call:
                    _current['oml:component'] = main_id
                else:
                    _current['oml:component'] = _flow_dict[_flow.name]
                _params.append(_current)

            for _identifier in _flow.components:
                subcomponent_model = self._get_parameters(component_model)[_identifier]
                _params.extend(extract_parameters(_flow.components[_identifier],
                                                  _flow_dict, subcomponent_model))
            return _params

        flow_dict = get_flow_dict(flow)
        model = model if model is not None else flow.model
        parameters = extract_parameters(flow, flow_dict, model, True, flow.flow_id)

        return parameters

    def _openml_param_name_to_keras(
            self,
            openml_parameter: openml.setups.OpenMLParameter,
            flow: OpenMLFlow,
    ) -> str:
        """
        Converts the name of an OpenMLParameter into the Keras name, given a flow.

        Parameters
        ----------
        openml_parameter: OpenMLParameter
            The parameter under consideration

        flow: OpenMLFlow
            The flow that provides context.

        Returns
        -------
        keras_parameter_name: str
            The name the parameter will have once used in Keras
        """
        if not isinstance(openml_parameter, openml.setups.OpenMLParameter):
            raise ValueError('openml_parameter should be an instance of OpenMLParameter')
        if not isinstance(flow, OpenMLFlow):
            raise ValueError('flow should be an instance of OpenMLFlow')

        flow_structure = flow.get_structure('name')
        if openml_parameter.flow_name not in flow_structure:
            raise ValueError('Obtained OpenMLParameter and OpenMLFlow do not correspond. ')
        name = openml_parameter.flow_name  # for PEP8
        return '__'.join(flow_structure[name] + [openml_parameter.parameter_name])

    def instantiate_model_from_hpo_class(
            self,
            model: Any,
            trace_iteration: OpenMLTraceIteration,
    ) -> Any:
        """Instantiate a ``base_estimator`` which can be searched over by the hyperparameter
        optimization model (UNUSED)

        Parameters
        ----------
        model : Any
            A hyperparameter optimization model which defines the model to be instantiated.
        trace_iteration : OpenMLTraceIteration
            Describing the hyperparameter settings to instantiate.

        Returns
        -------
        Any
        """

        return model
    def check_if_model_fitted(self, model: Any) -> bool:
        """Returns True/False denoting if the model has already been fitted/trained
        Parameters
        ----------
        model : Any
        Returns
        -------
        bool
        """

can_handle_flow(flow) classmethod

Check whether a given flow describes a Keras neural network.

This is done by parsing the external_version field.

Parameters

flow : OpenMLFlow

Returns

bool

Source code in openml_tensorflow/extension.py
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
@classmethod
def can_handle_flow(cls, flow: 'OpenMLFlow') -> bool:
    """Check whether a given flow describes a Keras neural network.

    This is done by parsing the ``external_version`` field.

    Parameters
    ----------
    flow : OpenMLFlow

    Returns
    -------
    bool
    """
    return cls._is_tf_flow(flow)

can_handle_model(model) classmethod

Check whether a model is an instance of tf.models.Model.

Parameters

model : Any

Returns

bool

Source code in openml_tensorflow/extension.py
77
78
79
80
81
82
83
84
85
86
87
88
89
@classmethod
def can_handle_model(cls, model: Any) -> bool:
    """Check whether a model is an instance of ``tf.models.Model``.

    Parameters
    ----------
    model : Any

    Returns
    -------
    bool
    """
    return isinstance(model, tensorflow.keras.models.Model)

check_if_model_fitted(model)

Returns True/False denoting if the model has already been fitted/trained Parameters


model : Any Returns


bool

Source code in openml_tensorflow/extension.py
1106
1107
1108
1109
1110
1111
1112
1113
1114
def check_if_model_fitted(self, model: Any) -> bool:
    """Returns True/False denoting if the model has already been fitted/trained
    Parameters
    ----------
    model : Any
    Returns
    -------
    bool
    """

compile_additional_information(task, additional_information)

Compiles additional information provided by the extension during the runs into a final set of files.

Parameters

task : OpenMLTask The task the model was run on. additional_information: List[Tuple[int, int, Any]] A list of (fold, repetition, additional information) tuples obtained during training.

Returns

files : Dict[str, Tuple[str, str]] A dictionary of files with their file name and contents.

Source code in openml_tensorflow/extension.py
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
def compile_additional_information(
        self,
        task: 'OpenMLTask',
        additional_information: List[Tuple[int, int, Any]]
) -> Dict[str, Tuple[str, str]]:
    """Compiles additional information provided by the extension during the runs into a final
    set of files.

    Parameters
    ----------
    task : OpenMLTask
        The task the model was run on.
    additional_information: List[Tuple[int, int, Any]]
        A list of (fold, repetition, additional information) tuples obtained during training.

    Returns
    -------
    files : Dict[str, Tuple[str, str]]
        A dictionary of files with their file name and contents.
    """
    return dict()

create_setup_string(model)

Create a string which can be used to reinstantiate the given model.

Parameters

model : Any

Returns

str

Source code in openml_tensorflow/extension.py
296
297
298
299
300
301
302
303
304
305
306
307
308
def create_setup_string(self, model: Any) -> str:
    """Create a string which can be used to reinstantiate the given model.

    Parameters
    ----------
    model : Any

    Returns
    -------
    str
    """
    run_environment = " ".join(self.get_version_information())
    return run_environment + " " + str(model)

flow_to_model(flow, initialize_with_defaults=False)

Initializes a Keras model based on a flow.

Parameters

flow : mixed the object to deserialize (can be flow object, or any serialized parameter value that is accepted by)

bool, optional (default=False)

If this flag is set, the hyperparameter values of flows will be ignored and a flow with its defaults is returned.

Returns

mixed

Source code in openml_tensorflow/extension.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
def flow_to_model(self, flow: 'OpenMLFlow', initialize_with_defaults: bool = False) -> Any:
    """Initializes a Keras model based on a flow.

    Parameters
    ----------
    flow : mixed
        the object to deserialize (can be flow object, or any serialized
        parameter value that is accepted by)

    initialize_with_defaults : bool, optional (default=False)
        If this flag is set, the hyperparameter values of flows will be
        ignored and a flow with its defaults is returned.

    Returns
    -------
    mixed
    """
    return self._deserialize_tf(flow, initialize_with_defaults=initialize_with_defaults)

get_version_information()

List versions of libraries required by the flow.

Libraries listed are Python, tensorflow, numpy and scipy.

Returns

List

Source code in openml_tensorflow/extension.py
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
def get_version_information(self) -> List[str]:
    """List versions of libraries required by the flow.

    Libraries listed are ``Python``, ``tensorflow``, ``numpy`` and ``scipy``.

    Returns
    -------
    List
    """

    import tensorflow
    import scipy
    import numpy

    major, minor, micro, _, _ = sys.version_info
    python_version = 'Python_{}.'.format(
        ".".join([str(major), str(minor), str(micro)]))
    tensorflow_version = 'tensorflow_{}.'.format(tensorflow.__version__)
    numpy_version = 'NumPy_{}.'.format(numpy.__version__)
    scipy_version = 'SciPy_{}.'.format(scipy.__version__)

    return [python_version, tensorflow_version, numpy_version, scipy_version]

instantiate_model_from_hpo_class(model, trace_iteration)

Instantiate a base_estimator which can be searched over by the hyperparameter optimization model (UNUSED)

Parameters

model : Any A hyperparameter optimization model which defines the model to be instantiated. trace_iteration : OpenMLTraceIteration Describing the hyperparameter settings to instantiate.

Returns

Any

Source code in openml_tensorflow/extension.py
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
def instantiate_model_from_hpo_class(
        self,
        model: Any,
        trace_iteration: OpenMLTraceIteration,
) -> Any:
    """Instantiate a ``base_estimator`` which can be searched over by the hyperparameter
    optimization model (UNUSED)

    Parameters
    ----------
    model : Any
        A hyperparameter optimization model which defines the model to be instantiated.
    trace_iteration : OpenMLTraceIteration
        Describing the hyperparameter settings to instantiate.

    Returns
    -------
    Any
    """

    return model

is_estimator(model)

Check whether the given model is a Keras neural network.

This function is only required for backwards compatibility and will be removed in the near future.

Parameters

model : Any

Returns

bool

Source code in openml_tensorflow/extension.py
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
def is_estimator(self, model: Any) -> bool:
    """Check whether the given model is a Keras neural network.

    This function is only required for backwards compatibility and will be removed in the
    near future.

    Parameters
    ----------
    model : Any

    Returns
    -------
    bool
    """
    return isinstance(model, tensorflow.keras.models.Model)

model_to_flow(model)

Transform a Keras model to a flow for uploading it to OpenML.

Parameters

model : Any

Returns

OpenMLFlow

Source code in openml_tensorflow/extension.py
216
217
218
219
220
221
222
223
224
225
226
227
228
def model_to_flow(self, model: Any) -> 'OpenMLFlow':
    """Transform a Keras model to a flow for uploading it to OpenML.

    Parameters
    ----------
    model : Any

    Returns
    -------
    OpenMLFlow
    """
    # Necessary to make pypy not complain about all the different possible return types
    return self._serialize_tf(model)

obtain_parameter_values(flow, model=None)

Extracts all parameter settings required for the flow from the model.

If no explicit model is provided, the parameters will be extracted from flow.model instead.

Parameters

flow : OpenMLFlow OpenMLFlow object (containing flow ids, i.e., it has to be downloaded from the server)

Any, optional (default=None)

The model from which to obtain the parameter values. Must match the flow signature. If None, use the model specified in OpenMLFlow.model.

Returns

list A list of dicts, where each dict has the following entries: - oml:name : str: The OpenML parameter name - oml:value : mixed: A representation of the parameter value - oml:component : int: flow id to which the parameter belongs

Source code in openml_tensorflow/extension.py
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
def obtain_parameter_values(
        self,
        flow: 'OpenMLFlow',
        model: Any = None,
) -> List[Dict[str, Any]]:
    """Extracts all parameter settings required for the flow from the model.

    If no explicit model is provided, the parameters will be extracted from `flow.model`
    instead.

    Parameters
    ----------
    flow : OpenMLFlow
        OpenMLFlow object (containing flow ids, i.e., it has to be downloaded from the server)

    model: Any, optional (default=None)
        The model from which to obtain the parameter values. Must match the flow signature.
        If None, use the model specified in ``OpenMLFlow.model``.

    Returns
    -------
    list
        A list of dicts, where each dict has the following entries:
        - ``oml:name`` : str: The OpenML parameter name
        - ``oml:value`` : mixed: A representation of the parameter value
        - ``oml:component`` : int: flow id to which the parameter belongs
    """
    openml.flows.functions._check_flow_for_server_id(flow)

    def get_flow_dict(_flow):
        flow_map = {_flow.name: _flow.flow_id}
        for subflow in _flow.components:
            flow_map.update(get_flow_dict(_flow.components[subflow]))
        return flow_map

    def extract_parameters(_flow, _flow_dict, component_model,
                           _main_call=False, main_id=None):
        # _flow is openml flow object, _param dict maps from flow name to flow
        # id for the main call, the param dict can be overridden (useful for
        # unit tests / sentinels) this way, for flows without subflows we do
        # not have to rely on _flow_dict
        exp_parameters = set(_flow.parameters)
        exp_components = set(_flow.components)

        _model_parameters = self._get_parameters(component_model)

        model_parameters = set(_model_parameters.keys())
        if len((exp_parameters | exp_components) ^ model_parameters) != 0:
            flow_params = sorted(exp_parameters | exp_components)
            model_params = sorted(model_parameters)
            raise ValueError('Parameters of the model do not match the '
                             'parameters expected by the '
                             'flow:\nexpected flow parameters: '
                             '%s\nmodel parameters: %s' % (flow_params,
                                                           model_params))

        _params = []
        for _param_name in _flow.parameters:
            _current = OrderedDict()
            _current['oml:name'] = _param_name

            current_param_values = self.model_to_flow(_model_parameters[_param_name])

            # Try to filter out components (a.k.a. subflows) which are
            # handled further down in the code (by recursively calling
            # this function)!
            if isinstance(current_param_values, openml.flows.OpenMLFlow):
                continue

            # vanilla parameter value
            parsed_values = json.dumps(current_param_values)
            if len(current_param_values)>2000:
               current_param_values = current_param_values[0:1000]
            _current['oml:value'] = parsed_values
            if _main_call:
                _current['oml:component'] = main_id
            else:
                _current['oml:component'] = _flow_dict[_flow.name]
            _params.append(_current)

        for _identifier in _flow.components:
            subcomponent_model = self._get_parameters(component_model)[_identifier]
            _params.extend(extract_parameters(_flow.components[_identifier],
                                              _flow_dict, subcomponent_model))
        return _params

    flow_dict = get_flow_dict(flow)
    model = model if model is not None else flow.model
    parameters = extract_parameters(flow, flow_dict, model, True, flow.flow_id)

    return parameters

seed_model(model, seed=None)

Not applied for Keras, since there are no random states in Keras.

Parameters

model : keras model The model to be seeded seed : int The seed to initialize the RandomState with. Unseeded subcomponents will be seeded with a random number from the RandomState.

Returns

Any

Source code in openml_tensorflow/extension.py
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
def seed_model(self, model: Any, seed: Optional[int] = None) -> Any:
    """
    Not applied for Keras, since there are no random states in Keras.

    Parameters
    ----------
    model : keras model
        The model to be seeded
    seed : int
        The seed to initialize the RandomState with. Unseeded subcomponents
        will be seeded with a random number from the RandomState.

    Returns
    -------
    Any
    """

    return model