convertOMLDataSetToMlr(obj, mlr.task.id = "<oml.data.name>",
task.type = NULL, target = obj$desc$default.target.attribute,
ignore.flagged.attributes = TRUE, drop.levels = TRUE,
fix.colnames = TRUE, verbosity = NULL)
Arguments
obj |
[OMLDataSet ]
The object that should be converted. |
mlr.task.id |
[character(1) ]
Id string for Task object.
The strings <oml.data.name> , <oml.data.id> and <oml.data.version>
will be replaced by their respective values contained in the OMLDataSet object.
Default is <oml.data.name> . |
task.type |
[character(1) ]
As we only pass the data set, we need to define the task type manually.
Possible are: “Supervised Classification”, “Supervised Regression”,
“Survival Analysis”.
Default is NULL which means to guess it from the target column in the
data set. If that is a factor or a logical, we choose classification.
If it is numeric we choose regression. In all other cases an error is thrown. |
target |
[character ]
The target for the classification/regression task.
Default is the default.target.attribute of the OMLDataSetDescription . |
ignore.flagged.attributes |
[logical(1) ]
Should those features that are listed in the data set description slot “ignore.attribute”
be removed?
Default is TRUE . |
drop.levels |
[logical(1) ]
Should empty factor levels be dropped in the data?
Default is TRUE . |
fix.colnames |
[logical(1) ]
Should colnames of the data be fixed using make.names ?
Default is TRUE . |
verbosity |
[integer(1) ]
Print verbose output on console? Possible values are:
0 : normal output,
1 : info output,
2 : debug output.
Default is set via setOMLConfig . |
Value
[Task
].
See also
Examples
# \dontrun{
# library("mlr")
# autosOML = getOMLDataSet(data.id = 9)
# autosMlr = convertOMLDataSetToMlr(autosOML)
# }